BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30334805)

  • 21. Scaffolding pre-assembled contigs using SSPACE.
    Boetzer M; Henkel CV; Jansen HJ; Butler D; Pirovano W
    Bioinformatics; 2011 Feb; 27(4):578-9. PubMed ID: 21149342
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pseudo-Sanger sequencing: massively parallel production of long and near error-free reads using NGS technology.
    Ruan J; Jiang L; Chong Z; Gong Q; Li H; Li C; Tao Y; Zheng C; Zhai W; Turissini D; Cannon CH; Lu X; Wu CI
    BMC Genomics; 2013 Oct; 14(1):711. PubMed ID: 24134808
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Index suffix-prefix overlaps by (w, k)-minimizer to generate long contigs for reads compression.
    Liu Y; Yu Z; Dinger ME; Li J
    Bioinformatics; 2019 Jun; 35(12):2066-2074. PubMed ID: 30407482
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel scaffolding algorithm based on contig error correction and path extension.
    Li M; Tang L; Liao Z; Luo J; Wu F; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2018 Jul; ():. PubMed ID: 30040649
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating long-read de novo assembly tools for eukaryotic genomes: insights and considerations.
    Cosma BM; Shirali Hossein Zade R; Jordan EN; van Lent P; Peng C; Pillay S; Abeel T
    Gigascience; 2022 Dec; 12():. PubMed ID: 38000912
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PERGA: a paired-end read guided de novo assembler for extending contigs using SVM and look ahead approach.
    Zhu X; Leung HC; Chin FY; Yiu SM; Quan G; Liu B; Wang Y
    PLoS One; 2014; 9(12):e114253. PubMed ID: 25461763
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of ONT and CCS sequencing technologies on the polyploid genome of a medicinal plant showed that high error rate of ONT reads are not suitable for self-correction.
    Zeng P; Tian Z; Han Y; Zhang W; Zhou T; Peng Y; Hu H; Cai J
    Chin Med; 2022 Aug; 17(1):94. PubMed ID: 35945546
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimized Illumina PCR-free library preparation for bacterial whole genome sequencing and analysis of factors influencing de novo assembly.
    Huptas C; Scherer S; Wenning M
    BMC Res Notes; 2016 May; 9():269. PubMed ID: 27176120
    [TBL] [Abstract][Full Text] [Related]  

  • 30. EPGA: de novo assembly using the distributions of reads and insert size.
    Luo J; Wang J; Zhang Z; Wu FX; Li M; Pan Y
    Bioinformatics; 2015 Mar; 31(6):825-33. PubMed ID: 25406329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. AlignGraph: algorithm for secondary de novo genome assembly guided by closely related references.
    Bao E; Jiang T; Girke T
    Bioinformatics; 2014 Jun; 30(12):i319-i328. PubMed ID: 24932000
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new strategy for better genome assembly from very short reads.
    Ji Y; Shi Y; Ding G; Li Y
    BMC Bioinformatics; 2011 Dec; 12():493. PubMed ID: 22208765
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SOPRA: Scaffolding algorithm for paired reads via statistical optimization.
    Dayarian A; Michael TP; Sengupta AM
    BMC Bioinformatics; 2010 Jun; 11():345. PubMed ID: 20576136
    [TBL] [Abstract][Full Text] [Related]  

  • 34. dnAQET: a framework to compute a consolidated metric for benchmarking quality of de novo assemblies.
    Yavas G; Hong H; Xiao W
    BMC Genomics; 2019 Sep; 20(1):706. PubMed ID: 31510940
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A de novo next generation genomic sequence assembler based on string graph and MapReduce cloud computing framework.
    Chang YJ; Chen CC; Chen CL; Ho JM
    BMC Genomics; 2012; 13 Suppl 7(Suppl 7):S28. PubMed ID: 23282094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. AlignGraph2: similar genome-assisted reassembly pipeline for PacBio long reads.
    Huang S; He X; Wang G; Bao E
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33621981
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Misassembly detection using paired-end sequence reads and optical mapping data.
    Muggli MD; Puglisi SJ; Ronen R; Boucher C
    Bioinformatics; 2015 Jun; 31(12):i80-8. PubMed ID: 26072512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BASE: a practical de novo assembler for large genomes using long NGS reads.
    Liu B; Liu CM; Li D; Li Y; Ting HF; Yiu SM; Luo R; Lam TW
    BMC Genomics; 2016 Aug; 17 Suppl 5(Suppl 5):499. PubMed ID: 27586129
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iterative error correction of long sequencing reads maximizes accuracy and improves contig assembly.
    Sameith K; Roscito JG; Hiller M
    Brief Bioinform; 2017 Jan; 18(1):1-8. PubMed ID: 26868358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimizing information in Next-Generation-Sequencing (NGS) reads for improving de novo genome assembly.
    Liu T; Tsai CH; Lee WB; Chiang JH
    PLoS One; 2013; 8(7):e69503. PubMed ID: 23922726
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.