These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 30334807)
1. A Low-Power Photoplethysmogram-Based Heart Rate Sensor Using Heartbeat Locked Loop. Lee J; Jang DH; Park S; Cho S IEEE Trans Biomed Circuits Syst; 2018 Dec; 12(6):1220-1229. PubMed ID: 30334807 [TBL] [Abstract][Full Text] [Related]
2. A 2.3-5.7 μW Tri-Modal Self-Adaptive Photoplethysmography Sensor Interface IC for Heart Rate, SpO Wang P; Agarwala R; Ownby NB; Liu X; Calhoun BH IEEE Trans Biomed Circuits Syst; 2024 Jun; 18(3):564-579. PubMed ID: 38289849 [TBL] [Abstract][Full Text] [Related]
3. Low-Noise Photoplethysmography Sensor Using Correlated Double Sampling for Heartbeat Interval Acquisition. Watanabe K; Izumi S; Sasai K; Yano Y; Kawaguchi H; Yoshimoto M IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1552-1562. PubMed ID: 31796415 [TBL] [Abstract][Full Text] [Related]
4. A 2.6 μW Monolithic CMOS Photoplethysmographic (PPG) Sensor Operating With 2 μW LED Power for Continuous Health Monitoring. Caizzone A; Boukhayma A; Enz C IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1243-1253. PubMed ID: 31581097 [TBL] [Abstract][Full Text] [Related]
5. Wireless photoplethysmographic device for heart rate variability signal acquisition and analysis. Reyes I; Nazeran H; Franco M; Haltiwanger E Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2092-5. PubMed ID: 23366333 [TBL] [Abstract][Full Text] [Related]
6. A 5-ms Error, 22-μA Photoplethysmography Sensor using Current Integration Circuit and Correlated Double Sampling. Watanabe K; Izumi S; Yano Y; Kawaguchi H; Yoshimoto M Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5566-5569. PubMed ID: 30441597 [TBL] [Abstract][Full Text] [Related]
7. Low-Power Photoplethysmogram Acquisition Integrated Circuit with Robust Light Interference Compensation. Kim J; Kim J; Ko H Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26729122 [TBL] [Abstract][Full Text] [Related]
8. A 280 μW, 108 dB DR PPG-Readout IC With Reconfigurable, 2nd-Order, Incremental ΔΣM Front-End for Direct Light-to-Digital Conversion. Marefat F; Erfani R; Kilgore KL; Mohseni P IEEE Trans Biomed Circuits Syst; 2020 Dec; 14(6):1183-1194. PubMed ID: 33186120 [TBL] [Abstract][Full Text] [Related]
9. Smart automated heart health monitoring using photoplethysmography signal classification. Raj R; Selvakumar J; Maik V Biomed Tech (Berl); 2021 Jun; 66(3):247-256. PubMed ID: 34062637 [TBL] [Abstract][Full Text] [Related]
10. Real-Time Robust Heart Rate Estimation From Wrist-Type PPG Signals Using Multiple Reference Adaptive Noise Cancellation. Chowdhury SS; Hyder R; Hafiz MSB; Haque MA IEEE J Biomed Health Inform; 2018 Mar; 22(2):450-459. PubMed ID: 27893403 [TBL] [Abstract][Full Text] [Related]
11. Binary CorNET: Accelerator for HR Estimation From Wrist-PPG. Rocha LG; Biswas D; Verhoef BE; Bampi S; Van Hoof C; Konijnenburg M; Verhelst M; Van Helleputte N IEEE Trans Biomed Circuits Syst; 2020 Aug; 14(4):715-726. PubMed ID: 32746344 [TBL] [Abstract][Full Text] [Related]
12. Photoplethysmogram measurement without direct skin-to-sensor contact using an adaptive light source intensity control. Baek HJ; Chung GS; Kim KK; Kim JS; Park KS IEEE Trans Inf Technol Biomed; 2009 Nov; 13(6):1085-8. PubMed ID: 19775979 [TBL] [Abstract][Full Text] [Related]
13. Contactless and continuous monitoring of heart rate based on photoplethysmography on a mattress. Wong MY; Pickwell-MacPherson E; Zhang YT Physiol Meas; 2010 Jul; 31(7):1065-74. PubMed ID: 20585149 [TBL] [Abstract][Full Text] [Related]
14. A Robust Motion Artifact Detection Algorithm for Accurate Detection of Heart Rates From Photoplethysmographic Signals Using Time-Frequency Spectral Features. Dao D; Salehizadeh SMA; Noh Y; Chong JW; Cho CH; McManus D; Darling CE; Mendelson Y; Chon KH IEEE J Biomed Health Inform; 2017 Sep; 21(5):1242-1253. PubMed ID: 28113791 [TBL] [Abstract][Full Text] [Related]
15. A 119dB Dynamic Range Charge Counting Light-to-Digital Converter For Wearable PPG/NIRS Monitoring Applications. Lin Q; Xu J; Song S; Breeschoten A; Konijnenburg M; Van Hoof C; Tavernier F; Van Helleputte N IEEE Trans Biomed Circuits Syst; 2020 Aug; 14(4):800-810. PubMed ID: 32746343 [TBL] [Abstract][Full Text] [Related]
16. Motion artifact cancellation and outlier rejection for clip-type ppg-based heart rate sensor. Shimazaki T; Hara S; Okuhata H; Nakamura H; Kawabata T Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2026-9. PubMed ID: 26736684 [TBL] [Abstract][Full Text] [Related]
17. A pilot study on low power pulse rate detection based on compressive sampling. Huang BY; Wang L; Wang B; Lin SJ; Wu D; Zhang YT Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():753-6. PubMed ID: 19963730 [TBL] [Abstract][Full Text] [Related]
18. Heart rate monitoring from wrist-type PPG based on singular spectrum analysis with motion decision. Yang Wang ; Zhiwen Liu ; Bin Dong Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3511-3514. PubMed ID: 28269055 [TBL] [Abstract][Full Text] [Related]
19. Motion Artifact Reduction in Wearable Photoplethysmography Based on Multi-Channel Sensors with Multiple Wavelengths. Lee J; Kim M; Park HK; Kim IY Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182772 [TBL] [Abstract][Full Text] [Related]
20. PPGnet: Deep Network for Device Independent Heart Rate Estimation from Photoplethysmogram. Shyam A; Ravichandran V; Preejith SP; Joseph J; Sivaprakasam M Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1899-1902. PubMed ID: 31946269 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]