BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 30334871)

  • 21. Surface charge modification decreases Pseudomonas aeruginosa adherence in vitro and bacterial persistence in an in vivo implant model.
    Kao WK; Gagnon PM; Vogel JP; Chole RA
    Laryngoscope; 2017 Jul; 127(7):1655-1661. PubMed ID: 28295372
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biofilm Formation on Breast Implant Surfaces by Major Gram-Positive Bacterial Pathogens.
    Rezende-Pereira G; Albuquerque JP; Souza MC; Nogueira BA; Silva MG; Hirata R; Mattos-Guaraldi AL; Duarte RS; Neves FPG
    Aesthet Surg J; 2021 Sep; 41(10):1144-1151. PubMed ID: 33378420
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prevention of biofilm formation by polyquaternary polymer.
    Dirain CO; Silva RC; Antonelli PJ
    Int J Pediatr Otorhinolaryngol; 2016 Sep; 88():157-62. PubMed ID: 27497405
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biofilm in implant infections: its production and regulation.
    Costerton JW; Montanaro L; Arciola CR
    Int J Artif Organs; 2005 Nov; 28(11):1062-8. PubMed ID: 16353112
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential effects of Pseudomonas aeruginosa on biofilm formation by different strains of Staphylococcus epidermidis.
    Pihl M; Davies JR; Chávez de Paz LE; Svensäter G
    FEMS Immunol Med Microbiol; 2010 Aug; 59(3):439-46. PubMed ID: 20528934
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antimicrobial coating agents: can biofilm formation on a breast implant be prevented?
    van Heerden J; Turner M; Hoffmann D; Moolman J
    J Plast Reconstr Aesthet Surg; 2009 May; 62(5):610-7. PubMed ID: 18359675
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Staphylococcus aureus and Staphylococcus epidermidis infections on implants.
    Oliveira WF; Silva PMS; Silva RCS; Silva GMM; Machado G; Coelho LCBB; Correia MTS
    J Hosp Infect; 2018 Feb; 98(2):111-117. PubMed ID: 29175074
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prevention and treatment of Staphylococcus aureus biofilms.
    Bhattacharya M; Wozniak DJ; Stoodley P; Hall-Stoodley L
    Expert Rev Anti Infect Ther; 2015; 13(12):1499-516. PubMed ID: 26646248
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacterial Adhesion and Biofilm Formation on Textured Breast Implant Shell Materials.
    James GA; Boegli L; Hancock J; Bowersock L; Parker A; Kinney BM
    Aesthetic Plast Surg; 2019 Apr; 43(2):490-497. PubMed ID: 30276456
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel Antibiotic-loaded Point-of-care Implant Coating Inhibits Biofilm.
    Jennings JA; Carpenter DP; Troxel KS; Beenken KE; Smeltzer MS; Courtney HS; Haggard WO
    Clin Orthop Relat Res; 2015 Jul; 473(7):2270-82. PubMed ID: 25604874
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis.
    Cerca N; Pier GB; Vilanova M; Oliveira R; Azeredo J
    Res Microbiol; 2005 May; 156(4):506-14. PubMed ID: 15862449
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activity of N-acetyl-L-cysteine against biofilm of Staphylococcus aureus and Pseudomonas aeruginosa on orthopedic prosthetic materials.
    Drago L; De Vecchi E; Mattina R; Romanò CL
    Int J Artif Organs; 2013 Jan; 36(1):39-46. PubMed ID: 23280076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adherence and biofilm formation of Staphylococcus epidermidis and Mycobacterium tuberculosis on various spinal implants.
    Ha KY; Chung YG; Ryoo SJ
    Spine (Phila Pa 1976); 2005 Jan; 30(1):38-43. PubMed ID: 15626979
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular and imaging techniques for bacterial biofilms in joint arthroplasty infections.
    Stoodley P; Kathju S; Hu FZ; Erdos G; Levenson JE; Mehta N; Dice B; Johnson S; Hall-Stoodley L; Nistico L; Sotereanos N; Sewecke J; Post JC; Ehrlich GD
    Clin Orthop Relat Res; 2005 Aug; (437):31-40. PubMed ID: 16056023
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tissue Plasminogen Activator Coating on Implant Surfaces Reduces Staphylococcus aureus Biofilm Formation.
    Kwiecinski J; Na M; Jarneborn A; Jacobsson G; Peetermans M; Verhamme P; Jin T
    Appl Environ Microbiol; 2016 Jan; 82(1):394-401. PubMed ID: 26519394
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioactive glass S53P4 eradicates
    Grønseth T; Vestby LK; Nesse LL; von Unge M; Silvola JT
    Ups J Med Sci; 2020 Aug; 125(3):217-225. PubMed ID: 32552165
    [No Abstract]   [Full Text] [Related]  

  • 37. Evaluation of the Pathogenic-Mixed Biofilm Formation of
    Gambino E; Maione A; Guida M; Albarano L; Carraturo F; Galdiero E; Di Onofrio V
    Int J Environ Res Public Health; 2022 Mar; 19(6):. PubMed ID: 35329426
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antimicrobial peptides prevent bacterial biofilm formation on the surface of polymethylmethacrylate bone cement.
    Volejníková A; Melicherčík P; Nešuta O; Vaňková E; Bednárová L; Rybáček J; Čeřovský V
    J Med Microbiol; 2019 Jun; 68(6):961-972. PubMed ID: 31107198
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biofilm Formation of Staphylococcus aureus on Various Surfaces and Their Resistance to Chlorine Sanitizer.
    Lee JS; Bae YM; Lee SY; Lee SY
    J Food Sci; 2015 Oct; 80(10):M2279-86. PubMed ID: 26417663
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immuno-detection of Staphylococcus aureus biofilm on a cochlear implant.
    Kos MI; Stenz L; François P; Guyot JP; Schrenzel J
    Infection; 2009 Oct; 37(5):450-4. PubMed ID: 19280117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.