These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 30335147)

  • 1. Single-Cell RNA Sequencing Reveals Novel Markers of Male Pituitary Stem Cells and Hormone-Producing Cell Types.
    Cheung LYM; George AS; McGee SR; Daly AZ; Brinkmeier ML; Ellsworth BS; Camper SA
    Endocrinology; 2018 Dec; 159(12):3910-3924. PubMed ID: 30335147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A GRFa2/Prop1/stem (GPS) cell niche in the pituitary.
    Garcia-Lavandeira M; Quereda V; Flores I; Saez C; Diaz-Rodriguez E; Japon MA; Ryan AK; Blasco MA; Dieguez C; Malumbres M; Alvarez CV
    PLoS One; 2009; 4(3):e4815. PubMed ID: 19283075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-cell messenger RNA sequencing reveals rare intestinal cell types.
    Grün D; Lyubimova A; Kester L; Wiebrands K; Basak O; Sasaki N; Clevers H; van Oudenaarden A
    Nature; 2015 Sep; 525(7568):251-5. PubMed ID: 26287467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clump formation in mouse pituitary-derived non-endocrine cell line Tpit/F1 promotes differentiation into growth-hormone-producing cells.
    Higuchi M; Yoshida S; Kanno N; Mitsuishi H; Ueharu H; Chen M; Nishimura N; Kato T; Kato Y
    Cell Tissue Res; 2017 Aug; 369(2):353-368. PubMed ID: 28364143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All Hormone-Producing Cell Types of the Pituitary Intermediate and Anterior Lobes Derive From Prop1-Expressing Progenitors.
    Davis SW; Keisler JL; Pérez-Millán MI; Schade V; Camper SA
    Endocrinology; 2016 Apr; 157(4):1385-96. PubMed ID: 26812162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pituitary progenitor cells tracked down by side population dissection.
    Chen J; Gremeaux L; Fu Q; Liekens D; Van Laere S; Vankelecom H
    Stem Cells; 2009 May; 27(5):1182-95. PubMed ID: 19418455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional control of precursor proliferation in the early phases of pituitary development.
    Zhu X; Rosenfeld MG
    Curr Opin Genet Dev; 2004 Oct; 14(5):567-74. PubMed ID: 15380249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid transition of NESTIN-expressing dividing cells from PROP1-positive to PIT1-positive advances prenatal pituitary development.
    Yoshida S; Kato T; Higuchi M; Yako H; Chen M; Kanno N; Ueharu H; Kato Y
    J Neuroendocrinol; 2013 Sep; 25(9):779-91. PubMed ID: 23855824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome Analyses of Female Somatotropes and Lactotropes Reveal Novel Regulators of Cell Identity in the Pituitary.
    Peel MT; Ho Y; Liebhaber SA
    Endocrinology; 2018 Dec; 159(12):3965-3980. PubMed ID: 30247555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Pituitary Progenitor Differentiation by β-Catenin.
    Youngblood JL; Coleman TF; Davis SW
    Endocrinology; 2018 Sep; 159(9):3287-3305. PubMed ID: 30085028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multistep control of pituitary organogenesis.
    Sheng HZ; Moriyama K; Yamashita T; Li H; Potter SS; Mahon KA; Westphal H
    Science; 1997 Dec; 278(5344):1809-12. PubMed ID: 9388186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pituitary stem/progenitor cells: embryonic players in the adult gland?
    Vankelecom H
    Eur J Neurosci; 2010 Dec; 32(12):2063-81. PubMed ID: 21143661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding the activated stem cell phenotype of the neonatally maturing pituitary.
    Laporte E; Hermans F; De Vriendt S; Vennekens A; Lambrechts D; Nys C; Cox B; Vankelecom H
    Elife; 2022 Jun; 11():. PubMed ID: 35699412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Premature differentiation and aberrant movement of pituitary cells lacking both Hes1 and Prop1.
    Himes AD; Raetzman LT
    Dev Biol; 2009 Jan; 325(1):151-61. PubMed ID: 18996108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PROP1-Dependent Retinoic Acid Signaling Regulates Developmental Pituitary Morphogenesis and Hormone Expression.
    Cheung LYM; Camper SA
    Endocrinology; 2020 Feb; 161(2):. PubMed ID: 31913463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pituitary gland development and disease: from stem cell to hormone production.
    Davis SW; Ellsworth BS; Peréz Millan MI; Gergics P; Schade V; Foyouzi N; Brinkmeier ML; Mortensen AH; Camper SA
    Curr Top Dev Biol; 2013; 106():1-47. PubMed ID: 24290346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-cell transcriptomic analysis of adult mouse pituitary reveals sexual dimorphism and physiologic demand-induced cellular plasticity.
    Ho Y; Hu P; Peel MT; Chen S; Camara PG; Epstein DJ; Wu H; Liebhaber SA
    Protein Cell; 2020 Aug; 11(8):565-583. PubMed ID: 32193873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of PROP1 in pituitary gland growth.
    Ward RD; Raetzman LT; Suh H; Stone BM; Nasonkin IO; Camper SA
    Mol Endocrinol; 2005 Mar; 19(3):698-710. PubMed ID: 15591534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PROP1 coexists with SOX2 and induces PIT1-commitment cells.
    Yoshida S; Kato T; Susa T; Cai LY; Nakayama M; Kato Y
    Biochem Biophys Res Commun; 2009 Jul; 385(1):11-5. PubMed ID: 19442651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How many homeobox genes does it take to make a pituitary gland?
    Watkins-Chow DE; Camper SA
    Trends Genet; 1998 Jul; 14(7):284-90. PubMed ID: 9676531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.