These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 30335365)

  • 21. Doped δ-bismuth oxides to investigate oxygen ion transport as a metric for condensed phase thermite ignition.
    Wang X; Zhou W; DeLisio JB; Egan GC; Zachariah MR
    Phys Chem Chem Phys; 2017 May; 19(20):12749-12758. PubMed ID: 28484752
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ignition and Combustion Characteristic of B·Mg Alloy Powders.
    Ma Y; Zhang K; Ma S; He J; Gai X; Zhang X
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Role of Graphene Oxide in the Exothermic Mechanism of Al/CuO Nanocomposites.
    Su J; Hu Y; Zhou B; Ye Y; Shen R
    Molecules; 2022 Nov; 27(21):. PubMed ID: 36364441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Incomplete reactions in nanothermite composites.
    Jacob RJ; Ortiz-Montalvo DL; Overdeep KR; Weihs TP; Zachariah MR
    J Appl Phys; 2017; 121(5):. PubMed ID: 38903950
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Smart Electromagnetic Thermites: GO/rGO Nanoscale Thermite Composites with Thermally Switchable Microwave Ignitability.
    Barkley SJ; Lawrence AR; Zohair M; Smithhisler OL; Pint CL; Michael JB; Sippel TR
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39678-39688. PubMed ID: 34232011
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly energetic compositions based on functionalized carbon nanomaterials.
    Yan QL; Gozin M; Zhao FQ; Cohen A; Pang SP
    Nanoscale; 2016 Mar; 8(9):4799-851. PubMed ID: 26880518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silicon Nanoparticles for the Reactivity and Energetic Density Enhancement of Energetic-Biocidal Mesoparticle Composites.
    Ghildiyal P; Ke X; Biswas P; Nava G; Schwan J; Xu F; Kline DJ; Wang H; Mangolini L; Zachariah MR
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):458-467. PubMed ID: 33373186
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Fluoroalkylsilane Surface Functionalization on Boron Combustion.
    Baek J; Jiang Y; Demko AR; Jimenez-Thomas AR; Vallez L; Ka D; Xia Y; Zheng X
    ACS Appl Mater Interfaces; 2022 May; 14(17):20190-20196. PubMed ID: 35467848
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites.
    Li Z; Fan G; Tan Z; Guo Q; Xiong D; Su Y; Li Z; Zhang D
    Nanotechnology; 2014 Aug; 25(32):325601. PubMed ID: 25053703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Porosity on Dynamic Mechanical Properties and Impact Response Characteristics of High Aluminum Content PTFE/Al Energetic Materials.
    Jiang C; Cai S; Mao L; Wang Z
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31905827
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermoplasmonic Ignition of Metal Nanoparticles.
    Mutlu M; Kang JH; Raza S; Schoen D; Zheng X; Kik PG; Brongersma ML
    Nano Lett; 2018 Mar; 18(3):1699-1706. PubMed ID: 29356548
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of Energetic Composites with 91% Solid Content by 3D Direct Writing.
    Deng Y; Wu X; Deng P; Guan F; Ren H
    Micromachines (Basel); 2021 Sep; 12(10):. PubMed ID: 34683211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metal-Free Hybrid Energetic Composites Based on Donor-Acceptor π-Conjugated Organic Energetic Catalysts with Enlightening the Laser Ignition Performance of Multi-Scale Ammonium Perchlorate.
    Du W; Tang P; Yang B; Yang L; Li X; Duan M; Gou S; Ma Q
    Small; 2023 Nov; 19(46):e2303678. PubMed ID: 37475508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced Energetic Performance of Aluminum Nanoparticles by Plasma Deposition of Perfluorinated Nanofilms.
    Agarwal PPK; Matsoukas T
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):35255-35264. PubMed ID: 35862005
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-Energy Composite Fuels with Improved Combustion Efficiency by Using AlH
    Yu MH; Xu R; Xie WX; Li YJ; Nie HQ; Yan QL
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49611-49622. PubMed ID: 37830898
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation and Characterization of Al/HTPB Composite for High Energetic Materials.
    Vorozhtsov A; Lerner M; Rodkevich N; Sokolov S; Perchatkina E; Paravan C
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33171684
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation of Bi
    Xia M; Yao Q; Yang H; Guo T; Du X; Zhang Y; Li G; Luo Y
    Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31212659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Linking molecular level chemistry to macroscopic combustion behavior for nano-energetic materials with halogen containing oxides.
    Farley CW; Pantoya ML; Losada M; Chaudhuri S
    J Chem Phys; 2013 Aug; 139(7):074701. PubMed ID: 23968101
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of Al@FTCS/P(VDF-HFP) Composite Energetic Materials and Their Reaction Properties.
    Ke X; Deng L; Wang Y; Tang K; Xiao L; Hao G; Li P; Zhou X
    Materials (Basel); 2024 Jun; 17(13):. PubMed ID: 38998129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphene Oxide Based Metallic Nanoparticles and their Some Biological and Environmental Application.
    Khan AAP; Khan A; Asiri AM; Ashraf GM; Alhogbia BG
    Curr Drug Metab; 2017; 18(11):1020-1029. PubMed ID: 29034831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.