BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30335528)

  • 1. Influence of Biochemical Cues in Human Corneal Stromal Cell Phenotype.
    Fernández-Pérez J; Ahearne M
    Curr Eye Res; 2019 Feb; 44(2):135-146. PubMed ID: 30335528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of growth factor supplementation on corneal stromal cell phenotype in vitro using a serum-free media.
    Lynch AP; O'Sullivan F; Ahearne M
    Exp Eye Res; 2016 Oct; 151():26-37. PubMed ID: 27456135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of retinoic acid on human corneal stromal keratocytes cultured in vitro under serum-free conditions.
    Gouveia RM; Connon CJ
    Invest Ophthalmol Vis Sci; 2013 Nov; 54(12):7483-91. PubMed ID: 24150763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corneal keratocyte transition to mesenchymal stem cell phenotype and reversal using serum-free medium supplemented with fibroblast growth factor-2, transforming growth factor-β3 and retinoic acid.
    Sidney LE; Hopkinson A
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e203-e215. PubMed ID: 27685949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression of epithelial basement membrane components nidogens and perlecan in corneal stromal cells in vitro.
    Santhanam A; Torricelli AA; Wu J; Marino GK; Wilson SE
    Mol Vis; 2015; 21():1318-27. PubMed ID: 26788024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Insulin-Like Growth Factor Binding Protein 2 (IGFBP2) in the Regulation of Corneal Fibroblast Differentiation.
    Park SH; Kim KW; Kim JC
    Invest Ophthalmol Vis Sci; 2015 Nov; 56(12):7293-302. PubMed ID: 26559475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibroblastic and bone marrow-derived cellularity in the corneal stroma.
    Wilson SE; Sampaio LP; Shiju TM; Carlos de Oliveira R
    Exp Eye Res; 2021 Jan; 202():108303. PubMed ID: 33068626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preservation and expansion of the primate keratocyte phenotype by downregulating TGF-beta signaling in a low-calcium, serum-free medium.
    Kawakita T; Espana EM; He H; Smiddy R; Parel JM; Liu CY; Tseng SC
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):1918-27. PubMed ID: 16638999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sphere formation from corneal keratocytes and phenotype specific markers.
    Scott SG; Jun AS; Chakravarti S
    Exp Eye Res; 2011 Dec; 93(6):898-905. PubMed ID: 22032988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serum-free spheroid culture of mouse corneal keratocytes.
    Yoshida S; Shimmura S; Shimazaki J; Shinozaki N; Tsubota K
    Invest Ophthalmol Vis Sci; 2005 May; 46(5):1653-8. PubMed ID: 15851565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partial restoration of the keratocyte phenotype to bovine keratocytes made fibroblastic by serum.
    Berryhill BL; Kader R; Kane B; Birk DE; Feng J; Hassell JR
    Invest Ophthalmol Vis Sci; 2002 Nov; 43(11):3416-21. PubMed ID: 12407151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IL-1 and TGF-β Modulation of Epithelial Basement Membrane Components Perlecan and Nidogen Production by Corneal Stromal Cells.
    Saikia P; Thangavadivel S; Medeiros CS; Lassance L; de Oliveira RC; Wilson SE
    Invest Ophthalmol Vis Sci; 2018 Nov; 59(13):5589-5598. PubMed ID: 30480706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maintenance of the keratocyte phenotype during cell proliferation stimulated by insulin.
    Musselmann K; Alexandrou B; Kane B; Hassell JR
    J Biol Chem; 2005 Sep; 280(38):32634-9. PubMed ID: 16169858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aldehyde dehydrogenase (ALDH) 3A1 expression by the human keratocyte and its repair phenotypes.
    Pei Y; Reins RY; McDermott AM
    Exp Eye Res; 2006 Nov; 83(5):1063-73. PubMed ID: 16822507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myofibroblast differentiation modulates keratocyte crystallin protein expression, concentration, and cellular light scattering.
    Jester JV; Brown D; Pappa A; Vasiliou V
    Invest Ophthalmol Vis Sci; 2012 Feb; 53(2):770-8. PubMed ID: 22247459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ex Vivo Propagation of Human Corneal Stromal "Activated Keratocytes" for Tissue Engineering.
    Yam GH; Yusoff NZ; Kadaba A; Tian D; Myint HH; Beuerman RW; Zhou L; Mehta JS
    Cell Transplant; 2015; 24(9):1845-61. PubMed ID: 25291523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncoupling keratocyte loss of corneal crystallin from markers of fibrotic repair.
    Stramer BM; Fini ME
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):4010-5. PubMed ID: 15505050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MMP regulation of corneal keratocyte motility and mechanics in 3-D collagen matrices.
    Zhou C; Petroll WM
    Exp Eye Res; 2014 Apr; 121():147-60. PubMed ID: 24530619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adipose-derived stem cells differentiate to keratocytes in vitro.
    Du Y; Roh DS; Funderburgh ML; Mann MM; Marra KG; Rubin JP; Li X; Funderburgh JL
    Mol Vis; 2010 Dec; 16():2680-9. PubMed ID: 21179234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human mesenchymal stem cells differentiate into keratocyte-like cells in keratocyte-conditioned medium.
    Park SH; Kim KW; Chun YS; Kim JC
    Exp Eye Res; 2012 Aug; 101():16-26. PubMed ID: 22683947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.