These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30335781)

  • 1. EMG pattern recognition compared to foot control of the DEKA Arm.
    Resnik LJ; Acluche F; Borgia M; Cancio J; Latlief G; Phillips S; Sasson N
    PLoS One; 2018; 13(10):e0204854. PubMed ID: 30335781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EMG Pattern Recognition Control of the DEKA Arm: Impact on User Ratings of Satisfaction and Usability.
    Resnik L; Acluche F; Borgia M; Latlief G; Phillips S
    IEEE J Transl Eng Health Med; 2019; 7():2100113. PubMed ID: 30680253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. User experience of controlling the DEKA Arm with EMG pattern recognition.
    Resnik LJ; Acluche F; Lieberman Klinger S
    PLoS One; 2018; 13(9):e0203987. PubMed ID: 30240420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control.
    Resnik L; Huang HH; Winslow A; Crouch DL; Zhang F; Wolk N
    J Neuroeng Rehabil; 2018 Mar; 15(1):23. PubMed ID: 29544501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees.
    Geng Y; Zhou P; Li G
    J Neuroeng Rehabil; 2012 Oct; 9():74. PubMed ID: 23036049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of the DEKA Arm for amputees with brachial plexus injury: A case series.
    Resnik L; Fantini C; Latlief G; Phillips S; Sasson N; Sepulveda E
    PLoS One; 2017; 12(6):e0178642. PubMed ID: 28628623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling a multi-degree of freedom upper limb prosthesis using foot controls: user experience.
    Resnik L; Klinger SL; Etter K; Fantini C
    Disabil Rehabil Assist Technol; 2014 Jul; 9(4):318-29. PubMed ID: 23902465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How do the outcomes of the DEKA Arm compare to conventional prostheses?
    Resnik LJ; Borgia ML; Acluche F; Cancio JM; Latlief G; Sasson N
    PLoS One; 2018; 13(1):e0191326. PubMed ID: 29342217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Function, quality of life, and community integration of DEKA Arm users after discharge from prosthetic training: Impact of home use experience.
    Resnik L; Acluche F; Borgia M; Cancio J; Latlief G; Sasson N
    Prosthet Orthot Int; 2018 Dec; 42(6):571-582. PubMed ID: 29779455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do users want to receive a DEKA Arm and why? Overall findings from the Veterans Affairs Study to optimize the DEKA Arm.
    Resnik L; Latlief G; Klinger SL; Sasson N; Walters LS
    Prosthet Orthot Int; 2014 Dec; 38(6):456-66. PubMed ID: 24286806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does the DEKA Arm substitute for or supplement conventional prostheses.
    Resnik L; Acluche F; Lieberman Klinger S; Borgia M
    Prosthet Orthot Int; 2018 Oct; 42(5):534-543. PubMed ID: 28905665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perceptions of satisfaction, usability and desirability of the DEKA Arm before and after a trial of home use.
    Resnik LJ; Borgia ML; Acluche F
    PLoS One; 2017; 12(6):e0178640. PubMed ID: 28575025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-reported and performance-based outcomes using DEKA Arm.
    Resnik L; Borgia M; Latlief G; Sasson N; Smurr-Walters L
    J Rehabil Res Dev; 2014; 51(3):351-62. PubMed ID: 25019659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the Ability of Congenital Upper Extremity Amputees to Control a Multi-Degree of Freedom Myoelectric Prosthesis.
    Kaluf B; Gart MS; Loeffler BJ; Gaston G
    J Hand Surg Am; 2022 Oct; 47(10):1019.e1-1019.e9. PubMed ID: 34657765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A real-time, practical sensor fault-tolerant module for robust EMG pattern recognition.
    Zhang X; Huang H
    J Neuroeng Rehabil; 2015 Feb; 12():18. PubMed ID: 25888946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IMU-Based Wrist Rotation Control of a Transradial Myoelectric Prosthesis.
    Bennett DA; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):419-427. PubMed ID: 28320673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feminine identity and functional benefits are key factors in women's decision making about upper limb prostheses: a case series.
    Resnik L; Klinger S; Gill A; Ekerholm Biester S
    Disabil Rehabil Assist Technol; 2019 Feb; 14(2):194-208. PubMed ID: 29741966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myoelectric Pattern Recognition Outperforms Direct Control for Transhumeral Amputees with Targeted Muscle Reinnervation: A Randomized Clinical Trial.
    Hargrove LJ; Miller LA; Turner K; Kuiken TA
    Sci Rep; 2017 Oct; 7(1):13840. PubMed ID: 29062019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection of sampling rate for EMG pattern recognition based prosthesis control.
    Li G; Li Y; Zhang Z; Geng Y; Zhou R
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5058-61. PubMed ID: 21096026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protocol for site selection and movement assessment for the myoelectric control of a multi-functional upper-limb prosthesis.
    Al-Timemy AH; Escudero J; Bugmann G; Outram N
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5817-20. PubMed ID: 24111061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.