These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 30335934)
21. Controlling Residual Lithium in High-Nickel (>90 %) Lithium Layered Oxides for Cathodes in Lithium-Ion Batteries. Seong WM; Cho KH; Park JW; Park H; Eum D; Lee MH; Kim IS; Lim J; Kang K Angew Chem Int Ed Engl; 2020 Oct; 59(42):18662-18669. PubMed ID: 32668043 [TBL] [Abstract][Full Text] [Related]
22. An in-situ gas chromatography investigation into the suppression of oxygen gas evolution by coated amorphous cobalt-phosphate nanoparticles on oxide electrode. Gim J; Song J; Kim S; Jo J; Kim S; Yoon J; Kim D; Hong SG; Park JH; Mathew V; Han J; Song SJ; Kim J Sci Rep; 2016 Mar; 6():23394. PubMed ID: 27001370 [TBL] [Abstract][Full Text] [Related]
23. Diethylzinc-Assisted Atomic Surface Reduction to Stabilize Li and Mn-Rich NCM. Rosy ; Taragin S; Evenstein E; Maletti S; Mikhailova D; Noked M ACS Appl Mater Interfaces; 2021 Sep; 13(37):44470-44478. PubMed ID: 34515465 [TBL] [Abstract][Full Text] [Related]
24. Rich-Carbonyl Carbon Catalysis Facilitating the Li Wu Y; Ju J; Shen B; Wei J; Jiang H; Li C; Hu Y Small; 2024 Jun; 20(24):e2311891. PubMed ID: 38178190 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of Gas Formation and Consumption Driven by Crossover Effect in High-Voltage Lithium-Ion Batteries with Ni-Rich NMC Cathodes. Mao C; Ruther RE; Geng L; Li Z; Leonard DN; Meyer HM; Sacci RL; Wood DL ACS Appl Mater Interfaces; 2019 Nov; 11(46):43235-43243. PubMed ID: 31625714 [TBL] [Abstract][Full Text] [Related]
26. Surface/Interfacial Structure and Chemistry of High-Energy Nickel-Rich Layered Oxide Cathodes: Advances and Perspectives. Hou P; Yin J; Ding M; Huang J; Xu X Small; 2017 Dec; 13(45):. PubMed ID: 28977732 [TBL] [Abstract][Full Text] [Related]
27. Investigation of Fluorine and Nitrogen as Anionic Dopants in Nickel-Rich Cathode Materials for Lithium-Ion Batteries. Binder JO; Culver SP; Pinedo R; Weber DA; Friedrich MS; Gries KI; Volz K; Zeier WG; Janek J ACS Appl Mater Interfaces; 2018 Dec; 10(51):44452-44462. PubMed ID: 30511570 [TBL] [Abstract][Full Text] [Related]
28. Electrochemical Oxidation of Li Cui Q; Zhang P; Wang J ACS Appl Mater Interfaces; 2020 Feb; 12(5):6627-6632. PubMed ID: 31922718 [TBL] [Abstract][Full Text] [Related]
29. High-Performance Cells Containing Lithium Metal Anodes, LiNi Salitra G; Markevich E; Afri M; Talyosef Y; Hartmann P; Kulisch J; Sun YK; Aurbach D ACS Appl Mater Interfaces; 2018 Jun; 10(23):19773-19782. PubMed ID: 29787244 [TBL] [Abstract][Full Text] [Related]
30. Role of Mn content on the electrochemical properties of nickel-rich layered LiNi(0.8-x)Co(0.1)Mn(0.1+x)O₂ (0.0 ≤ x ≤ 0.08) cathodes for lithium-ion batteries. Zheng J; Kan WH; Manthiram A ACS Appl Mater Interfaces; 2015 Apr; 7(12):6926-34. PubMed ID: 25756196 [TBL] [Abstract][Full Text] [Related]
31. Controlling Surface Structure and Primary Particle Size to Enhance Performance and Reduce Gas Evolution in Lithium- and Manganese-Rich Layered Oxide Cathodes. Park JY; Choi J; Lee S; Jeong JS; Min KS; Lee JS; Kim H; Park JS; Park J; Yoon S ACS Appl Mater Interfaces; 2024 May; 16(17):22048-22054. PubMed ID: 38632122 [TBL] [Abstract][Full Text] [Related]
32. Activated Co in Thiospinel Boosting Li Chen Y; Li J; Lu B; Liu Y; Mao R; Song Y; Li H; Yu X; Gao Y; Peng Q; Qi X; Zhou G Adv Mater; 2024 Oct; 36(40):e2406856. PubMed ID: 39177199 [TBL] [Abstract][Full Text] [Related]
33. Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries. Li W; Dolocan A; Oh P; Celio H; Park S; Cho J; Manthiram A Nat Commun; 2017 Apr; 8():14589. PubMed ID: 28443608 [TBL] [Abstract][Full Text] [Related]
34. Probing Lithium Carbonate Formation in Trace-O Zhao Z; Su Y; Peng Z J Phys Chem Lett; 2019 Feb; 10(3):322-328. PubMed ID: 30615461 [TBL] [Abstract][Full Text] [Related]
35. CO₂ and O₂ evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study. Wang H; Rus E; Sakuraba T; Kikuchi J; Kiya Y; Abruña HD Anal Chem; 2014 Jul; 86(13):6197-201. PubMed ID: 24845246 [TBL] [Abstract][Full Text] [Related]
36. Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux: morphology and performance as a cathode material for lithium ion batteries. Kim Y ACS Appl Mater Interfaces; 2012 May; 4(5):2329-33. PubMed ID: 22497580 [TBL] [Abstract][Full Text] [Related]
37. Thermal and electrochemical decomposition of lithium peroxide in non-catalyzed carbon cathodes for Li-air batteries. Beyer H; Meini S; Tsiouvaras N; Piana M; Gasteiger HA Phys Chem Chem Phys; 2013 Jul; 15(26):11025-37. PubMed ID: 23715054 [TBL] [Abstract][Full Text] [Related]
38. Wet-CO Kim Y; Park H; Dolocan A; Warner JH; Manthiram A ACS Appl Mater Interfaces; 2021 Jun; 13(23):27096-27105. PubMed ID: 34061491 [TBL] [Abstract][Full Text] [Related]
39. Tunable and robust phosphite-derived surface film to protect lithium-rich cathodes in lithium-ion batteries. Han JG; Lee SJ; Lee J; Kim JS; Lee KT; Choi NS ACS Appl Mater Interfaces; 2015 Apr; 7(15):8319-29. PubMed ID: 25822879 [TBL] [Abstract][Full Text] [Related]
40. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[Ni(x)Li((1-2x)/3)Mn((2-x)/3)]O2 (0 ≤ x ≤ 0.5). Hy S; Felix F; Rick J; Su WN; Hwang BJ J Am Chem Soc; 2014 Jan; 136(3):999-1007. PubMed ID: 24364760 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]