These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30335948)

  • 41. Absorption and Magnetic Circular Dichroism Analyses of Giant Zeeman Splittings in Diffusion-Doped Colloidal Cd(1-x)Mn(x)Se Quantum Dots.
    Barrows CJ; Vlaskin VA; Gamelin DR
    J Phys Chem Lett; 2015 Aug; 6(15):3076-81. PubMed ID: 26267205
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spin-polarized Mn2+ emission from Mn-doped colloidal nanocrystals.
    Viswanatha R; Pietryga JM; Klimov VI; Crooker SA
    Phys Rev Lett; 2011 Aug; 107(6):067402. PubMed ID: 21902367
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Magnetoplasmonics beyond Metals: Ultrahigh Sensing Performance in Transparent Conductive Oxide Nanocrystals.
    Gabbani A; Sangregorio C; Tandon B; Nag A; Gurioli M; Pineider F
    Nano Lett; 2022 Nov; 22(22):9036-9044. PubMed ID: 36346871
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tuning infrared plasmon resonances in doped metal-oxide nanocrystals through cation-exchange reactions.
    Liu Z; Zhong Y; Shafei I; Borman R; Jeong S; Chen J; Losovyj Y; Gao X; Li N; Du Y; Sarnello E; Li T; Su D; Ma W; Ye X
    Nat Commun; 2019 Mar; 10(1):1394. PubMed ID: 30918244
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Continuous Growth of Metal Oxide Nanocrystals: Enhanced Control of Nanocrystal Size and Radial Dopant Distribution.
    Jansons AW; Hutchison JE
    ACS Nano; 2016 Jul; 10(7):6942-51. PubMed ID: 27328328
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Competition between Depletion Effects and Coupling in the Plasmon Modulation of Doped Metal Oxide Nanocrystals.
    Tandon B; Agrawal A; Heo S; Milliron DJ
    Nano Lett; 2019 Mar; 19(3):2012-2019. PubMed ID: 30794418
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus.
    Kramer NJ; Schramke KS; Kortshagen UR
    Nano Lett; 2015 Aug; 15(8):5597-603. PubMed ID: 26214245
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Luminescence, Plasmonic, and Magnetic Properties of Doped Semiconductor Nanocrystals.
    Pradhan N; Das Adhikari S; Nag A; Sarma DD
    Angew Chem Int Ed Engl; 2017 Jun; 56(25):7038-7054. PubMed ID: 28150912
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hierarchically Doped Plasmonic Nanocrystal Metamaterials.
    Kim K; Sherman ZM; Cleri A; Chang WJ; Maria JP; Truskett TM; Milliron DJ
    Nano Lett; 2023 Aug; 23(16):7633-7641. PubMed ID: 37558214
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tunable Valley Polarized Plasmon-Exciton Polaritons in Two-Dimensional Semiconductors.
    Ding B; Zhang Z; Chen YH; Zhang Y; Blaikie RJ; Qiu M
    ACS Nano; 2019 Feb; 13(2):1333-1341. PubMed ID: 30726051
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Imaging Infrared Plasmon Hybridization in Doped Semiconductor Nanocrystal Dimers.
    Olafsson A; Khorasani S; Busche JA; Araujo JJ; Idrobo JC; Gamelin DR; Masiello DJ; Camden JP
    J Phys Chem Lett; 2021 Oct; 12(42):10270-10276. PubMed ID: 34652912
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Direct observation of narrow mid-infrared plasmon linewidths of single metal oxide nanocrystals.
    Johns RW; Bechtel HA; Runnerstrom EL; Agrawal A; Lounis SD; Milliron DJ
    Nat Commun; 2016 May; 7():11583. PubMed ID: 27174681
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Radial-position-controlled doping of CdS/ZnS core/shell nanocrystals: surface effects and position-dependent properties.
    Yang Y; Chen O; Angerhofer A; Cao YC
    Chemistry; 2009; 15(13):3186-97. PubMed ID: 19206119
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plasmon-in-a-Box: On the Physical Nature of Few-Carrier Plasmon Resonances.
    Jain PK
    J Phys Chem Lett; 2014 Sep; 5(18):3112-9. PubMed ID: 26276321
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Light-Induced Paramagnetism in Colloidal Ag
    Najafi A; Sharma M; Delikanli S; Bhattacharya A; Murphy JR; Pientka J; Sharma A; Quinn AP; Erdem O; Kattel S; Kelestemur Y; Kovalenko MV; Rice WD; Demir HV; Petrou A
    J Phys Chem Lett; 2021 Mar; 12(11):2892-2899. PubMed ID: 33724845
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Anomalous circular polarization of photoluminescence spectra of individual CdSe nanocrystals in an applied magnetic field.
    Htoon H; Crooker SA; Furis M; Jeong S; Efros AL; Klimov VI
    Phys Rev Lett; 2009 Jan; 102(1):017402. PubMed ID: 19257239
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Revealing the Relationship between Energy Level and Gas Sensing Performance in Heteroatom-Doped Semiconducting Nanostructures.
    Chen H; Zhao Y; Shi L; Li GD; Sun L; Zou X
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29795-29804. PubMed ID: 30095885
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals.
    Zhou S; Pi X; Ni Z; Ding Y; Jiang Y; Jin C; Delerue C; Yang D; Nozaki T
    ACS Nano; 2015 Jan; 9(1):378-86. PubMed ID: 25551330
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Defect Chemistry and Plasmon Physics of Colloidal Metal Oxide Nanocrystals.
    Lounis SD; Runnerstrom EL; Llordés A; Milliron DJ
    J Phys Chem Lett; 2014 May; 5(9):1564-74. PubMed ID: 26270097
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phonon-Plasmon Coupling and Active Cu Dopants in Indium Arsenide Nanocrystals Studied by Resonance Raman Spectroscopy.
    Faust A; Amit Y; Banin U
    J Phys Chem Lett; 2017 Jun; 8(11):2519-2525. PubMed ID: 28524661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.