BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 30335956)

  • 1. Formation of Single Nanopores with Diameters of 20-50 nm in Silicon Nitride Membranes Using Laser-Assisted Controlled Breakdown.
    Ying C; Houghtaling J; Eggenberger OM; Guha A; Nirmalraj P; Awasthi S; Tian J; Mayer M
    ACS Nano; 2018 Nov; 12(11):11458-11470. PubMed ID: 30335956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conductance-based profiling of nanopores: Accommodating fabrication irregularities.
    Bandara YMNDY; Nichols JW; Iroshika Karawdeniya B; Dwyer JR
    Electrophoresis; 2018 Feb; 39(4):626-634. PubMed ID: 29131359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photothermally Assisted Thinning of Silicon Nitride Membranes for Ultrathin Asymmetric Nanopores.
    Yamazaki H; Hu R; Zhao Q; Wanunu M
    ACS Nano; 2018 Dec; 12(12):12472-12481. PubMed ID: 30457833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of Biomolecules Using Solid-State Nanopores Fabricated by Controlled Dielectric Breakdown.
    Cheng P; Zhao C; Pan Q; Xiong Z; Chen Q; Miao X; He Y
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable fabrication of a large nanopore by controlled dielectric breakdown in a high-pH solution for the detection of various-sized molecules.
    Yanagi I; Akahori R; Takeda KI
    Sci Rep; 2019 Sep; 9(1):13143. PubMed ID: 31511597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis.
    Briggs K; Kwok H; Tabard-Cossa V
    Small; 2014 May; 10(10):2077-86. PubMed ID: 24585682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High fidelity moving Z-score based controlled breakdown fabrication of solid-state nanopore.
    Roshan KA; Tang Z; Guan W
    Nanotechnology; 2019 Mar; 30(9):095502. PubMed ID: 30523901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of multiple nanopores in a SiN
    Wang Y; Ying C; Zhou W; de Vreede L; Liu Z; Tian J
    Sci Rep; 2018 Jan; 8(1):1234. PubMed ID: 29352158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lifetime and Stability of Silicon Nitride Nanopores and Nanopore Arrays for Ionic Measurements.
    Chou YC; Masih Das P; Monos DS; Drndić M
    ACS Nano; 2020 Jun; 14(6):6715-6728. PubMed ID: 32275381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An apparatus based on an atomic force microscope for implementing tip-controlled local breakdown.
    St-Denis T; Yazda K; Capaldi X; Bustamante J; Safari M; Miyahara Y; Zhang Y; Grutter P; Reisner W
    Rev Sci Instrum; 2019 Dec; 90(12):123703. PubMed ID: 31893796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On Stochastic Reduction in Laser-Assisted Dielectric Breakdown for Programmable Nanopore Fabrication.
    Tang Z; Dong M; He X; Guan W
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13383-13391. PubMed ID: 33705089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-Time Profiling of Solid-State Nanopores During Solution-Phase Nanofabrication.
    Bandara YM; Karawdeniya BI; Dwyer JR
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30583-30589. PubMed ID: 27709879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicon Nitride Nanopores Formed by Simple Chemical Etching: DNA Translocations and TEM Imaging.
    Xia Z; Scott A; Keneipp R; Chen J; Niedzwiecki DJ; DiPaolo B; Drndić M
    ACS Nano; 2022 Nov; 16(11):18648-18657. PubMed ID: 36251751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and Deterministic Fabrication of Sub-5 Nanometer Solid-State Pores by Feedback-Controlled Laser Processing.
    Zvuloni E; Zrehen A; Gilboa T; Meller A
    ACS Nano; 2021 Jul; 15(7):12189-12200. PubMed ID: 34219449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast Fabrication Nanopores on a PMMA Membrane by a Local High Electric Field Controlled Breakdown.
    Fang S; Zeng D; He S; Li Y; Pang Z; Wang Y; Liang L; Weng T; Xie W; Wang D
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluid surface coatings for solid-state nanopores: comparison of phospholipid bilayers and archaea-inspired lipid monolayers.
    Eggenberger OM; Leriche G; Koyanagi T; Ying C; Houghtaling J; Schroeder TBH; Yang J; Li J; Hall A; Mayer M
    Nanotechnology; 2019 Aug; 30(32):325504. PubMed ID: 30991368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-state nanopore fabrication by automated controlled breakdown.
    Waugh M; Briggs K; Gunn D; Gibeault M; King S; Ingram Q; Jimenez AM; Berryman S; Lomovtsev D; Andrzejewski L; Tabard-Cossa V
    Nat Protoc; 2020 Jan; 15(1):122-143. PubMed ID: 31836867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemically Functionalizing Controlled Dielectric Breakdown Silicon Nitride Nanopores by Direct Photohydrosilylation.
    Bandara YMNDY; Karawdeniya BI; Hagan JT; Chevalier RB; Dwyer JR
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30411-30420. PubMed ID: 31347369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing.
    Ayub M; Ivanov A; Hong J; Kuhn P; Instuli E; Edel JB; Albrecht T
    J Phys Condens Matter; 2010 Nov; 22(45):454128. PubMed ID: 21339614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-state nanopore localization by controlled breakdown of selectively thinned membranes.
    Carlsen AT; Briggs K; Hall AR; Tabard-Cossa V
    Nanotechnology; 2017 Feb; 28(8):085304-85304. PubMed ID: 28045003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.