These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

509 related articles for article (PubMed ID: 30335957)

  • 1. Tunable Ultrafast Nonlinear Optical Properties of Graphene/MoS
    Sun X; Zhang B; Li Y; Luo X; Li G; Chen Y; Zhang C; He J
    ACS Nano; 2018 Nov; 12(11):11376-11385. PubMed ID: 30335957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic layer MoS
    Ye F; Lee J; Feng PX
    Nanoscale; 2017 Nov; 9(46):18208-18215. PubMed ID: 29160324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe₂/MoS₂ van der Waals Heterostructures.
    Zhang K; Zhang T; Cheng G; Li T; Wang S; Wei W; Zhou X; Yu W; Sun Y; Wang P; Zhang D; Zeng C; Wang X; Hu W; Fan HJ; Shen G; Chen X; Duan X; Chang K; Dai N
    ACS Nano; 2016 Mar; 10(3):3852-8. PubMed ID: 26950255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast charge transfer dynamics pathways in two-dimensional MoS
    Garcia-Basabe Y; Rocha AR; Vicentin FC; Villegas CEP; Nascimento R; Romani EC; de Oliveira EC; Fechine GJM; Li S; Eda G; Larrude DG
    Phys Chem Chem Phys; 2017 Nov; 19(44):29954-29962. PubMed ID: 29090284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust Stacking-Independent Ultrafast Charge Transfer in MoS
    Ji Z; Hong H; Zhang J; Zhang Q; Huang W; Cao T; Qiao R; Liu C; Liang J; Jin C; Jiao L; Shi K; Meng S; Liu K
    ACS Nano; 2017 Dec; 11(12):12020-12026. PubMed ID: 29116758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interlayer Coupling and Ultrafast Hot Electron Transfer Dynamics in Metallic VSe
    Park TG; Choi BK; Park J; Kim J; Chang YJ; Rotermund F
    ACS Nano; 2021 Apr; 15(4):7756-7764. PubMed ID: 33761743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Photoluminescence of Multiple Two-Dimensional van der Waals Heterostructures Fabricated by Layer-by-Layer Oxidation of MoS
    Kang S; Kim YS; Jeong JH; Kwon J; Kim JH; Jung Y; Kim JC; Kim B; Bae SH; Huang PY; Hone JC; Jeong HY; Park JW; Lee CH; Lee GH
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1245-1252. PubMed ID: 33356110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric Field Tunable Ultrafast Interlayer Charge Transfer in Graphene/WS
    Liu Y; Zhang J; Meng S; Yam C; Frauenheim T
    Nano Lett; 2021 May; 21(10):4403-4409. PubMed ID: 34000186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge Transfer in Graphene-MoS
    Zou Y; Zhang Z; Wang C; Cheng Y; Wang C; Sun K; Zhang W; Suo P; Lin X; Ma H; Leng Y; Liu W; Du J; Ma G
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):30589-30597. PubMed ID: 38814136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-principles calculations of the electronic properties of SiC-based bilayer and trilayer heterostructures.
    Li S; Sun M; Chou JP; Wei J; Xing H; Hu A
    Phys Chem Chem Phys; 2018 Oct; 20(38):24726-24734. PubMed ID: 30225488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonant energy transfer in a van der Waals stacked MoS
    Roy R; Thapa R; Biswas S; Saha S; Ghorai UK; Sen D; Kumar EM; Kumar GS; Mazumder N; Roy D; Chattopadhyay KK
    Nanoscale; 2018 Sep; 10(35):16822-16829. PubMed ID: 30167606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Layer Rotation-Angle-Dependent Excitonic Absorption in van der Waals Heterostructures Revealed by Electron Energy Loss Spectroscopy.
    Gogoi PK; Lin YC; Senga R; Komsa HP; Wong SL; Chi D; Krasheninnikov AV; Li LJ; Breese MBH; Pennycook SJ; Wee ATS; Suenaga K
    ACS Nano; 2019 Aug; 13(8):9541-9550. PubMed ID: 31345026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thickness-Dependent Interlayer Charge Transfer in MoSe
    Zheng T; Valencia-Acuna P; Zereshki P; Beech KM; Deng L; Ni Z; Zhao H
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6489-6495. PubMed ID: 33522222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron dynamics in MoS
    Zhang X; He D; Yi L; Zhao S; He J; Wang Y; Zhao H
    Nanoscale; 2017 Oct; 9(38):14533-14539. PubMed ID: 28930344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides.
    Fang H; Battaglia C; Carraro C; Nemsak S; Ozdol B; Kang JS; Bechtel HA; Desai SB; Kronast F; Unal AA; Conti G; Conlon C; Palsson GK; Martin MC; Minor AM; Fadley CS; Yablonovitch E; Maboudian R; Javey A
    Proc Natl Acad Sci U S A; 2014 Apr; 111(17):6198-202. PubMed ID: 24733906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures.
    Wang H; Bang J; Sun Y; Liang L; West D; Meunier V; Zhang S
    Nat Commun; 2016 May; 7():11504. PubMed ID: 27160484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable Electron and Hole Injection Enabled by Atomically Thin Tunneling Layer for Improved Contact Resistance and Dual Channel Transport in MoS
    Khan MA; Rathi S; Lee C; Lim D; Kim Y; Yun SJ; Youn DH; Kim GH
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23961-23967. PubMed ID: 29938500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge Transport in MoS
    Doan MH; Jin Y; Adhikari S; Lee S; Zhao J; Lim SC; Lee YH
    ACS Nano; 2017 Apr; 11(4):3832-3840. PubMed ID: 28291323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear optical properties of MoS
    Liu WJ; Liu ML; Liu B; Quhe RG; Lei M; Fang SB; Teng H; Wei ZY
    Opt Express; 2019 Mar; 27(5):6689-6699. PubMed ID: 30876248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Band Alignment and Minigaps in Monolayer MoS2-Graphene van der Waals Heterostructures.
    Pierucci D; Henck H; Avila J; Balan A; Naylor CH; Patriarche G; Dappe YJ; Silly MG; Sirotti F; Johnson AT; Asensio MC; Ouerghi A
    Nano Lett; 2016 Jul; 16(7):4054-61. PubMed ID: 27281693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.