BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 30336020)

  • 1. Delayed Sensor Activation Based on Transient Coatings: Biofouling Protection in Complex Biofluids.
    Ruiz-Valdepeñas Montiel V; Sempionatto JR; Esteban-Fernández de Ávila B; Whitworth A; Campuzano S; Pingarrón JM; Wang J
    J Am Chem Soc; 2018 Oct; 140(43):14050-14053. PubMed ID: 30336020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid-like Polymer Coating as a Promising Candidate for Reducing Electrode Contamination and Noise in Complex Biofluids.
    Yang C; Yang C; Li X; Zhang A; He G; Wu Q; Liu X; Huang S; Huang X; Cui G; Hu N; Xie X; Hang T
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4450-4462. PubMed ID: 33443399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-Linkable Polymer-Based Multi-layers for Protecting Electrochemical Glucose Biosensors against Uric Acid, Ascorbic Acid, and Biofouling Interferences.
    Lielpetere A; Jayakumar K; Leech D; Schuhmann W
    ACS Sens; 2023 Apr; 8(4):1756-1765. PubMed ID: 36943936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct electrochemical biosensing in gastrointestinal fluids.
    Ruiz-Valdepeñas Montiel V; Sempionatto JR; Campuzano S; Pingarrón JM; Esteban Fernández de Ávila B; Wang J
    Anal Bioanal Chem; 2019 Jul; 411(19):4597-4604. PubMed ID: 30552492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enabling Multiplexed Electrochemical Detection of Biomarkers with High Sensitivity in Complex Biological Samples.
    Timilsina SS; Jolly P; Durr N; Yafia M; Ingber DE
    Acc Chem Res; 2021 Sep; 54(18):3529-3539. PubMed ID: 34478255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH-Activated Dissolvable Polymeric Coatings to Reduce Biofouling on Electrochemical Sensors.
    Uçar A; González-Fernández E; Staderini M; Murray AF; Mount AR; Bradley M
    J Funct Biomater; 2023 Jun; 14(6):. PubMed ID: 37367293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical glucose sensors in diabetes management: an updated review (2010-2020).
    Teymourian H; Barfidokht A; Wang J
    Chem Soc Rev; 2020 Nov; 49(21):7671-7709. PubMed ID: 33020790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zwitterionic phenyl layers: finally, stable, anti-biofouling coatings that do not passivate electrodes.
    Gui AL; Luais E; Peterson JR; Gooding JJ
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):4827-35. PubMed ID: 23642233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Printed Antifouling Electrodes for Biosensing Applications.
    Zinggeler M; Schär S; Kurth F
    ACS Appl Mater Interfaces; 2022 Dec; 14(51):56578-56584. PubMed ID: 36513371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basement Membrane-Based Glucose Sensor Coatings Enhance Continuous Glucose Monitoring in Vivo.
    Klueh U; Qiao Y; Czajkowski C; Ludzinska I; Antar O; Kreutzer DL
    J Diabetes Sci Technol; 2015 Aug; 9(5):957-65. PubMed ID: 26306494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Fouling Substrates for Plasmonic Sensing of Circulating Biomarkers in Biological Fluids.
    Mauriz E
    Biosensors (Basel); 2020 Jun; 10(6):. PubMed ID: 32531908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zwitterionic poly(carboxybetaine) hydrogels for glucose biosensors in complex media.
    Yang W; Xue H; Carr LR; Wang J; Jiang S
    Biosens Bioelectron; 2011 Jan; 26(5):2454-9. PubMed ID: 21111598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the Environmental Compatibility of Marine Sensors by Surface Functionalization with Graphene Oxide.
    Jiang T; Qi L; Qin W
    Anal Chem; 2019 Oct; 91(20):13268-13274. PubMed ID: 31525286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti-Fouling Strategies of Electrochemical Sensors for Tumor Markers.
    Song G; Han H; Ma Z
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photostructurized electrochemical biosensors for bioreactor control and measurement in body fluids.
    Lobmaier C; Schalkhammer T; Hawa G; Ecker B; Pittner F
    J Mol Recognit; 1995; 8(1-2):146-50. PubMed ID: 7598948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Multiple-Channel Electrochemical Microneedle Electrode Array via Separated Functionalization and Assembly Method.
    Huang XS; Huang S; Zheng ST; Liang BM; Zhang T; Yue W; Liu FM; Shi P; Xie X; Chen HJ
    Biosensors (Basel); 2024 May; 14(5):. PubMed ID: 38785717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in amperometric glucose biosensors for in vivo monitoring.
    Jaffari SA; Turner AP
    Physiol Meas; 1995 Feb; 16(1):1-15. PubMed ID: 7749351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrarapid Method for Coating Electrochemical Sensors with Antifouling Conductive Nanomaterials Enables Highly Sensitive Multiplexed Detection in Whole Blood.
    Timilsina SS; Durr N; Yafia M; Sallum H; Jolly P; Ingber DE
    Adv Healthc Mater; 2022 Apr; 11(8):e2102244. PubMed ID: 34965031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical sensing interfaces with tunable porosity for nonenzymatic glucose detection: a Cu foam case.
    Niu X; Li Y; Tang J; Hu Y; Zhao H; Lan M
    Biosens Bioelectron; 2014 Jan; 51():22-8. PubMed ID: 23920092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micrometer-thick and porous nanocomposite coating for electrochemical sensors with exceptional antifouling and electroconducting properties.
    Lee JC; Kim SY; Song J; Jang H; Kim M; Kim H; Choi SQ; Kim S; Jolly P; Kang T; Park S; Ingber DE
    Nat Commun; 2024 Feb; 15(1):711. PubMed ID: 38331881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.