These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 30336317)
21. Phenol and chlorinated phenols exhibit different apoptotic potential in human red blood cells (in vitro study). Michałowicz J; Włuka A; Cyrkler M; Maćczak A; Sicińska P; Mokra K Environ Toxicol Pharmacol; 2018 Jul; 61():95-101. PubMed ID: 29857326 [TBL] [Abstract][Full Text] [Related]
22. A comparison of the in vitro cyto- and neurotoxicity of brominated and halogen-free flame retardants: prioritization in search for safe(r) alternatives. Hendriks HS; Meijer M; Muilwijk M; van den Berg M; Westerink RH Arch Toxicol; 2014 Apr; 88(4):857-69. PubMed ID: 24395120 [TBL] [Abstract][Full Text] [Related]
23. Brominated flame retardants, tetrabromobisphenol A and hexabromocyclododecane, activate mitogen-activated protein kinases (MAPKs) in human natural killer cells. Cato A; Celada L; Kibakaya EC; Simmons N; Whalen MM Cell Biol Toxicol; 2014 Dec; 30(6):345-60. PubMed ID: 25341744 [TBL] [Abstract][Full Text] [Related]
24. Thin-layer chromatography coupled with high performance liquid chromatography for determining tetrabromobisphenol A/S and their derivatives in soils. Liu A; Shen Z; Tian Y; Shi R; Liu Y; Zhao Z; Xian M J Chromatogr A; 2017 Dec; 1526():151-156. PubMed ID: 29102057 [TBL] [Abstract][Full Text] [Related]
25. In-situ generation of fluorescent silica nano-aggregates of silatranyl appended furfural Schiff base and its application to the spectrofluorimetric analysis of phenolic brominated flame retardants in aqueous medium. Gupta H; Singh R; Kaur V Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 278():121338. PubMed ID: 35567821 [TBL] [Abstract][Full Text] [Related]
26. Mitochondrial-related effects of pentabromophenol, tetrabromobisphenol A, and triphenyl phosphate on murine BV-2 microglia cells. Bowen C; Childers G; Perry C; Martin N; McPherson CA; Lauten T; Santos J; Harry GJ Chemosphere; 2020 Sep; 255():126919. PubMed ID: 32402876 [TBL] [Abstract][Full Text] [Related]
27. Toxic effects of brominated flame retardants in man and in wildlife. Darnerud PO Environ Int; 2003 Sep; 29(6):841-53. PubMed ID: 12850100 [TBL] [Abstract][Full Text] [Related]
28. Brominated flame retardants (BFRs): A review on environmental contamination in China. Yu G; Bu Q; Cao Z; Du X; Xia J; Wu M; Huang J Chemosphere; 2016 May; 150():479-490. PubMed ID: 26725304 [TBL] [Abstract][Full Text] [Related]
29. The effect of a brominated flame retardant, tetrabromobisphenol-A, on free radical formation in human neutrophil granulocytes: the involvement of the MAP kinase pathway and protein kinase C. Reistad T; Mariussen E; Fonnum F Toxicol Sci; 2005 Jan; 83(1):89-100. PubMed ID: 15456914 [TBL] [Abstract][Full Text] [Related]
30. A national survey of tetrabromobisphenol-A, hexabromocyclododecane and decabrominated diphenyl ether in human milk from China: Occurrence and exposure assessment. Shi Z; Zhang L; Zhao Y; Sun Z; Zhou X; Li J; Wu Y Sci Total Environ; 2017 Dec; 599-600():237-245. PubMed ID: 28477480 [TBL] [Abstract][Full Text] [Related]
31. Inhibition and induction of aromatase (CYP19) activity by brominated flame retardants in H295R human adrenocortical carcinoma cells. Cantón RF; Sanderson JT; Letcher RJ; Bergman A; van den Berg M Toxicol Sci; 2005 Dec; 88(2):447-55. PubMed ID: 16177243 [TBL] [Abstract][Full Text] [Related]
32. Effects of tetrabromobisphenol A, a brominated flame retardant, on the immune response to respiratory syncytial virus infection in mice. Watanabe W; Shimizu T; Sawamura R; Hino A; Konno K; Hirose A; Kurokawa M Int Immunopharmacol; 2010 Apr; 10(4):393-7. PubMed ID: 20074668 [TBL] [Abstract][Full Text] [Related]
33. Brominated flame retardants, hexabromocyclododecane and tetrabromobisphenol A, affect proinflammatory protein expression in human bronchial epithelial cells via disruption of intracellular signaling. Koike E; Yanagisawa R; Takano H Toxicol In Vitro; 2016 Apr; 32():212-9. PubMed ID: 26718265 [TBL] [Abstract][Full Text] [Related]
34. Bromophenols, both present in marine organisms and in industrial flame retardants, disturb cellular Ca2+ signaling in neuroendocrine cells (PC12). Hassenklöver T; Predehl S; Pilli J; Ledwolorz J; Assmann M; Bickmeyer U Aquat Toxicol; 2006 Jan; 76(1):37-45. PubMed ID: 16263183 [TBL] [Abstract][Full Text] [Related]
35. The widely utilized brominated flame retardant tetrabromobisphenol A (TBBPA) is a potent inhibitor of the SERCA Ca2+ pump. Ogunbayo OA; Michelangeli F Biochem J; 2007 Dec; 408(3):407-15. PubMed ID: 17784851 [TBL] [Abstract][Full Text] [Related]
36. Contamination trends and factors affecting the transfer of hexabromocyclododecane diastereomers, tetrabromobisphenol A, and 2,4,6-tribromophenol to breast milk in Japan. Fujii Y; Kato Y; Masuda N; Harada KH; Koizumi A; Haraguchi K Environ Pollut; 2018 Jun; 237():936-943. PubMed ID: 29572047 [TBL] [Abstract][Full Text] [Related]
37. Legacy and novel brominated flame retardants in indoor dust from Beijing, China: Occurrence, human exposure assessment and evidence for PBDEs replacement. Wang J; Wang Y; Shi Z; Zhou X; Sun Z Sci Total Environ; 2018 Mar; 618():48-59. PubMed ID: 29126026 [TBL] [Abstract][Full Text] [Related]
38. A review on environmental occurrence, toxic effects and transformation of man-made bromophenols. Michałowicz J; Włuka A; Bukowska B Sci Total Environ; 2022 Mar; 811():152289. PubMed ID: 34902422 [TBL] [Abstract][Full Text] [Related]
39. Brominated flame retardants: cause for concern? Birnbaum LS; Staskal DF Environ Health Perspect; 2004 Jan; 112(1):9-17. PubMed ID: 14698924 [TBL] [Abstract][Full Text] [Related]
40. Extracellular Histones Induced Eryptotic Death in Human Erythrocytes. Yeung KW; Lau PM; Tsang HL; Ho HP; Kwan YW; Kong SK Cell Physiol Biochem; 2019; 53(1):229-241. PubMed ID: 31302949 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]