These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30336431)

  • 1. The influence of microplastics on trophic interaction strengths and oviposition preferences of dipterans.
    Cuthbert RN; Al-Jaibachi R; Dalu T; Dick JTA; Callaghan A
    Sci Total Environ; 2019 Feb; 651(Pt 2):2420-2423. PubMed ID: 30336431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examining effects of ontogenic microplastic transference on Culex mosquito mortality and adult weight.
    Al-Jaibachi R; Cuthbert RN; Callaghan A
    Sci Total Environ; 2019 Feb; 651(Pt 1):871-876. PubMed ID: 30253369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential Interaction Strengths and Prey Preferences Across Larval Mosquito Ontogeny by a Cohabiting Predatory Midge.
    Cuthbert RN; Callaghan A; Dick JTA
    J Med Entomol; 2019 Sep; 56(5):1428-1432. PubMed ID: 31038180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Up and away: ontogenic transference as a pathway for aerial dispersal of microplastics.
    Al-Jaibachi R; Cuthbert RN; Callaghan A
    Biol Lett; 2018 Sep; 14(9):. PubMed ID: 30232097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does microplastic ingestion by zooplankton affect predator-prey interactions? An experimental study on larviphagy.
    Van Colen C; Vanhove B; Diem A; Moens T
    Environ Pollut; 2020 Jan; 256():113479. PubMed ID: 31679869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inter-Population Similarities and Differences in Predation Efficiency of a Mosquito Natural Enemy.
    Cuthbert RN; Dalu T; Wasserman RJ; Weyl OLF; Froneman PW; Callaghan A; Dick JTA
    J Med Entomol; 2020 Nov; 57(6):1983-1987. PubMed ID: 32459349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large size (>100-μm) microplastics are not biomagnifying in coastal marine food webs of British Columbia, Canada.
    Covernton GA; Cox KD; Fleming WL; Buirs BM; Davies HL; Juanes F; Dudas SE; Dower JF
    Ecol Appl; 2022 Oct; 32(7):e2654. PubMed ID: 35543035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microplastics do not affect the feeding rates of a marine predator.
    Cunningham EM; Cuthbert RN; Coughlan NE; Kregting L; Cairnduff V; Dick JTA
    Sci Total Environ; 2021 Jul; 779():146487. PubMed ID: 34030230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dietary uptake, biodistribution, and depuration of microplastics in the freshwater diving beetle Cybister japonicus: Effects on predacious behavior.
    Kim SW; Kim D; Chae Y; An YJ
    Environ Pollut; 2018 Nov; 242(Pt A):839-844. PubMed ID: 30036837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemicals of predatory mosquitofish (Gambusia affinis) influence selection of oviposition site by Culex mosquitoes.
    Angelon KA; Petranka JW
    J Chem Ecol; 2002 Apr; 28(4):797-806. PubMed ID: 12035927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing predator-prey interactions in a chemically altered aquatic environment: the effects of DDT on Xenopus laevis and Culex sp. larvae interactions and behaviour.
    South J; Botha TL; Wolmarans NJ; Wepener V; Weyl OLF
    Ecotoxicology; 2019 Sep; 28(7):771-780. PubMed ID: 31278447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trophic transference of microplastics under a low exposure scenario: Insights on the likelihood of particle cascading along marine food-webs.
    Santana MFM; Moreira FT; Turra A
    Mar Pollut Bull; 2017 Aug; 121(1-2):154-159. PubMed ID: 28595982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zooplankters' nightmare: The fast and efficient catching basket of larval phantom midges (Diptera: Chaoborus).
    Kruppert S; Deussen L; Weiss LC; Horstmann M; Wolff JO; Kleinteich T; Gorb SN; Tollrian R
    PLoS One; 2019; 14(3):e0214013. PubMed ID: 30901351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water depth-dependent notonectid predatory impacts across larval mosquito ontogeny.
    Dalal A; Cuthbert RN; Dick JT; Gupta S
    Pest Manag Sci; 2019 Oct; 75(10):2610-2617. PubMed ID: 30729643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predation ability and non-consumptive effects of Notonecta sellata (Heteroptera: Notonectidae) on immature stages of Culex pipiens (Diptera: Culicidae).
    Fischer S; Pereyra D; Fernández L
    J Vector Ecol; 2012 Jun; 37(1):245-51. PubMed ID: 22548560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microplastics affect mosquito from aquatic to terrestrial lifestyles and are transferred to mammals through mosquito bites.
    Li JH; Liu XH; Liang GR; Gao HT; Guo SH; Zhou XY; Xing D; Zhao T; Li CX
    Sci Total Environ; 2024 Mar; 917():170547. PubMed ID: 38296097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical detection of the predator Notonecta irrorata by ovipositing Culex mosquitoes.
    Blaustein L; Blaustein J; Chase J
    J Vector Ecol; 2005 Dec; 30(2):299-301. PubMed ID: 16599167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microplastic pollution differentially affects development of disease-vectoring Aedes and Culex mosquitoes.
    Griffin CD; Tominiko C; Medeiros MCI; Walguarnery JW
    Ecotoxicol Environ Saf; 2023 Nov; 267():115639. PubMed ID: 37924798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural infochemical DMSP stimulates the transfer of microplastics from freshwater zooplankton to fish: An olfactory trap.
    Yang W; Tan Q; Qian S; Huang Y; Xu EG; Long X; Li W
    Aquat Toxicol; 2023 Dec; 265():106735. PubMed ID: 37984150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mosquito oviposition and larvae development in response to kairomones originated by different fish.
    Cohen S; Silberbush A
    Med Vet Entomol; 2021 Mar; 35(1):129-133. PubMed ID: 32557738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.