These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 30336577)

  • 1. A Secure Transmission Scheme Based on Artificial Fading for Wireless CrowdSensing Networks.
    Xu ZJ; Chen FN; Wu Y; Gong Y
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30336577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiuser communication scheme based on binary phase-shift keying and chaos for telemedicine.
    Michel-Macarty JA; Murillo-Escobar MA; López-Gutiérrez RM; Cruz-Hernández C; Cardoza-Avendaño L
    Comput Methods Programs Biomed; 2018 Aug; 162():165-175. PubMed ID: 29903483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secure OFDM transmission scheme based on chaotic encryption and noise-masking key distribution.
    Wan Y; Ren J; Liu B; Mao Y; Chen S; Wu X; Li Y; Wu Y; Zhao L; Sun T; Ullah R
    Opt Lett; 2022 Jun; 47(11):2903-2906. PubMed ID: 35648960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical-Layer Security in Power-Domain NOMA Based on Different Chaotic Maps.
    Abu Al-Atta M; Said KA; Mohamed MA; Raslan W
    Entropy (Basel); 2023 Jan; 25(1):. PubMed ID: 36673282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical secure optical communication based on private chaotic spectral phase encryption/decryption.
    Jiang N; Zhao A; Xue C; Tang J; Qiu K
    Opt Lett; 2019 Apr; 44(7):1536-1539. PubMed ID: 30933084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sliced chaotic encrypted transmission scheme based on key masked distribution in a W-band millimeter-wave system.
    Guo Z; Ren J; Liu B; Zhong Q; Li Y; Mao Y; Wu X; Xia W; Song X; Chen S; Tu B; Wu Y
    Opt Express; 2024 May; 32(11):19019-19033. PubMed ID: 38859046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Communicating with noise: How chaos and noise combine to generate secure encryption keys.
    Minai AA; Pandian TD
    Chaos; 1998 Sep; 8(3):621-628. PubMed ID: 12779766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Friendly Jamming Scheme in Industrial Crowdsensing Networks against Eavesdropping Attack.
    Li X; Wang Q; Dai HN; Wang H
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29904003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical scanning cryptography for secure wireless transmission.
    Poon TC; Kim T; Doh K
    Appl Opt; 2003 Nov; 42(32):6496-503. PubMed ID: 14650492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical-layer security of optical communication based on chaotic optical encryption without an additional driving signal.
    Xue C; Xia Y; Chen W; Gu P; Zhang Z
    Opt Lett; 2023 May; 48(10):2611-2614. PubMed ID: 37186721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Channel-Based Key Generation for Encrypted Body-Worn Wireless Sensor Networks.
    Van Torre P
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27618051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chaotic optical communications at 56 Gbit/s over 100-km fiber transmission based on a chaos generation model driven by long short-term memory networks.
    Jiang L; Feng J; Yan L; Yi A; Li SS; Yang H; Dong Y; Wang L; Wang A; Wang Y; Pan W; Luo B
    Opt Lett; 2022 May; 47(10):2382-2385. PubMed ID: 35561356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-Reconciled Physical-Layer Keys-Assisted Secure Communication Scheme Based on Channel Correlation.
    Wang M; Huang K; Wan Z; Sun X; Jin L; Zhao K
    Entropy (Basel); 2022 Aug; 24(8):. PubMed ID: 36010831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mode division multiplexing chaotic encryption scheme based on key intertwining and accompanying transmission.
    Ren J; Liu B; Wan Y; Zhu X; Ullah R; Ma Y; Wu X; Mao Y; Sun T; Zhang C; Shen S; Wang Z; Wang G
    Opt Express; 2022 Dec; 30(26):47896-47908. PubMed ID: 36558707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Experimental Realization of a Chaos-Based Secure Communication Using Arduino Microcontrollers.
    Zapateiro De la Hoz M; Acho L; Vidal Y
    ScientificWorldJournal; 2015; 2015():123080. PubMed ID: 26413563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secure Multiuser Communications in Wireless Sensor Networks with TAS and Cooperative Jamming.
    Yang M; Zhang B; Huang Y; Yang N; Guo D; Gao B
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27845753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaotic physical layer encryption scheme based on phase ambiguity for a DMT system.
    Wang X; Li Z; Zhang Q; Pan X; Gao R; Xin X; Yao H; Tian F; Tian Q; Wang Y
    Opt Express; 2022 Apr; 30(9):14782-14797. PubMed ID: 35473215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated physical-layer secure visible light communication and positioning system based on polar codes.
    Fang J; Pan J; Huang X; Lin J; Jiang C
    Opt Express; 2023 Dec; 31(25):41756-41772. PubMed ID: 38087566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of synchronized wideband complex signals and its application in secure optical communication.
    Zhao A; Jiang N; Liu S; Zhang Y; Qiu K
    Opt Express; 2020 Aug; 28(16):23363-23373. PubMed ID: 32752334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trading off security and practicability to explore high-speed and long-haul chaotic optical communication.
    Jiang L; Pan Y; Yi A; Feng J; Pan W; Yi L; Hu W; Wang A; Wang Y; Qin Y; Yan L
    Opt Express; 2021 Apr; 29(8):12750-12762. PubMed ID: 33985025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.