These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 30336625)

  • 1. Ether-Oxygen Containing Electrospun Microfibrous and Sub-Microfibrous Scaffolds Based on Poly(butylene 1,4-cyclohexanedicarboxylate) for Skeletal Muscle Tissue Engineering.
    Bloise N; Berardi E; Gualandi C; Zaghi E; Gigli M; Duelen R; Ceccarelli G; Cortesi EE; Costamagna D; Bruni G; Lotti N; Focarete ML; Visai L; Sampaolesi M
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30336625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions.
    Tong HW; Wang M; Lu WW
    J Biomater Sci Polym Ed; 2012; 23(6):779-806. PubMed ID: 21418747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale-Engineered Muscle Constructs: PEG Hydrogel Micro-Patterning on an Electrospun PCL Mat Functionalized with Gold Nanoparticles.
    Beldjilali-Labro M; Jellali R; Brown AD; Garcia Garcia A; Lerebours A; Guenin E; Bedoui F; Dufresne M; Stewart C; Grosset JF; Legallais C
    Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of PLGA/MWNTs composite electrospun fibrous scaffolds for improved myogenic differentiation of C2C12 cells.
    Xu J; Xie Y; Zhang H; Ye Z; Zhang W
    Colloids Surf B Biointerfaces; 2014 Nov; 123():907-15. PubMed ID: 25466454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fibrous biodegradable l-alanine-based scaffolds for vascular tissue engineering.
    Srinath D; Lin S; Knight DK; Rizkalla AS; Mequanint K
    J Tissue Eng Regen Med; 2014 Jul; 8(7):578-88. PubMed ID: 22899439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electroactive 3D Scaffolds Based on Silk Fibroin and Water-Borne Polyaniline for Skeletal Muscle Tissue Engineering.
    Zhang M; Guo B
    Macromol Biosci; 2017 Sep; 17(9):. PubMed ID: 28671759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal myogenesis on highly orientated microfibrous polyesterurethane scaffolds.
    Riboldi SA; Sadr N; Pigini L; Neuenschwander P; Simonet M; Mognol P; Sampaolesi M; Cossu G; Mantero S
    J Biomed Mater Res A; 2008 Mar; 84(4):1094-101. PubMed ID: 17685407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An anisotropically and heterogeneously aligned patterned electrospun scaffold with tailored mechanical property and improved bioactivity for vascular tissue engineering.
    Xu H; Li H; Ke Q; Chang J
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8706-18. PubMed ID: 25826222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering.
    Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP
    BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo biocompatibility assessment of poly (ether imide) electrospun scaffolds.
    Haase T; Krost A; Sauter T; Kratz K; Peter J; Kamann S; Jung F; Lendlein A; Zohlnhöfer D; Rüder C
    J Tissue Eng Regen Med; 2017 Apr; 11(4):1034-1044. PubMed ID: 25712330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple and effective method for making multipotent/multilineage scaffolds with hydrophilic nature without any postmodification/treatment.
    Vaikkath D; Anitha R; Sumathy B; Nair PD
    Colloids Surf B Biointerfaces; 2016 May; 141():112-119. PubMed ID: 26848946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 5-Azacytidine-mediated hMSC behavior on electrospun scaffolds for skeletal muscle regeneration.
    Fasolino I; Guarino V; Cirillo V; Ambrosio L
    J Biomed Mater Res A; 2017 Sep; 105(9):2551-2561. PubMed ID: 28512793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring chemical and physical properties of fibrous scaffolds from block copolyesters containing ether and thio-ether linkages for skeletal differentiation of human mesenchymal stromal cells.
    Chen H; Gigli M; Gualandi C; Truckenmüller R; van Blitterswijk C; Lotti N; Munari A; Focarete ML; Moroni L
    Biomaterials; 2016 Jan; 76():261-72. PubMed ID: 26546918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells.
    Brunelle AR; Horner CB; Low K; Ico G; Nam J
    Acta Biomater; 2018 Jan; 66():166-176. PubMed ID: 29128540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel ether-linkages containing aliphatic copolyesters of poly(butylene 1,4-cyclohexanedicarboxylate) as promising candidates for biomedical applications.
    Gigli M; Lotti N; Vercellino M; Visai L; Munari A
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():86-97. PubMed ID: 24268237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo skeletal muscle biocompatibility of composite, coaxial electrospun, and microfibrous scaffolds.
    McKeon-Fischer KD; Rossmeisl JH; Whittington AR; Freeman JW
    Tissue Eng Part A; 2014 Jul; 20(13-14):1961-70. PubMed ID: 24471815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pigmented Silk Nanofibrous Composite for Skeletal Muscle Tissue Engineering.
    Manchineella S; Thrivikraman G; Khanum KK; Ramamurthy PC; Basu B; Govindaraju T
    Adv Healthc Mater; 2016 May; 5(10):1222-32. PubMed ID: 27226037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(3,4-ethylenedioxythiophene) nanoparticle and poly(ɛ-caprolactone) electrospun scaffold characterization for skeletal muscle regeneration.
    McKeon-Fischer KD; Browe DP; Olabisi RM; Freeman JW
    J Biomed Mater Res A; 2015 Nov; 103(11):3633-41. PubMed ID: 25855940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Architectured helically coiled scaffolds from elastomeric poly(butylene succinate) (PBS) copolyester via wet electrospinning.
    Sonseca A; Sahay R; Stepien K; Bukala J; Wcislek A; McClain A; Sobolewski P; Sui X; Puskas JE; Kohn J; Wagner HD; El Fray M
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110505. PubMed ID: 31923996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skeletal muscle regeneration via engineered tissue culture over electrospun nanofibrous chitosan/PVA scaffold.
    Kheradmandi M; Vasheghani-Farahani E; Ghiaseddin A; Ganji F
    J Biomed Mater Res A; 2016 Jul; 104(7):1720-7. PubMed ID: 26945909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.