These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 30336967)

  • 1. Electrocoagulation of wastewater using aluminum, iron, and magnesium electrodes.
    Devlin TR; Kowalski MS; Pagaduan E; Zhang X; Wei V; Oleszkiewicz JA
    J Hazard Mater; 2019 Apr; 368():862-868. PubMed ID: 30336967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coagulation and precipitation as post-treatment of anaerobically treated primary municipal wastewater.
    Diamadopoulos E; Megalou K; Georgiou M; Gizgis N
    Water Environ Res; 2007 Feb; 79(2):131-9. PubMed ID: 17370838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrocoagulation for nutrients removal in the slaughterhouse wastewater: comparison between iron and aluminum electrodes treatment.
    Potrich MC; Duarte ESA; Sikora MS; Costa da Rocha RD
    Environ Technol; 2022 Feb; 43(5):751-765. PubMed ID: 32731790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of humic acid removal and floc characteristics by electrocoagulation and chemical coagulation.
    Semerjian L; Damaj A; Salam D
    Environ Monit Assess; 2015 Nov; 187(11):670. PubMed ID: 26439123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes.
    Kobya M; Can OT; Bayramoglu M
    J Hazard Mater; 2003 Jun; 100(1-3):163-78. PubMed ID: 12835020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laboratory studies on nitrogen and phosphorus removal from swine wastewater by iron electrolysis.
    Ikematsu M; Kaneda K; Takaoka D; Yasuda M
    Environ Technol; 2007 May; 28(5):521-8. PubMed ID: 17615961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Treatment of paper-recycling wastewater by electrocoagulation using aluminum and iron electrodes.
    Izadi A; Hosseini M; Najafpour Darzi G; Nabi Bidhendi G; Pajoum Shariati F
    J Environ Health Sci Eng; 2018 Dec; 16(2):257-264. PubMed ID: 30728997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significance of design and operational variables in chemical phosphorus removal.
    Szabó A; Takács I; Murthy S; Daigger GT; Licskó I; Smith S
    Water Environ Res; 2008 May; 80(5):407-16. PubMed ID: 18605380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrocoagulation of palm oil mill effluent as wastewater treatment and hydrogen production using electrode aluminum.
    Nasution MA; Yaakob Z; Ali E; Tasirin SM; Abdullah SR
    J Environ Qual; 2011; 40(4):1332-9. PubMed ID: 21712603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic stabilisation of sludge produced during municipal wastewater treatment by electrocoagulation.
    Hutnan M; Drtil M; Kalina A
    J Hazard Mater; 2006 Apr; 131(1-3):163-9. PubMed ID: 16297548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orthophosphate and metaphosphate ion removal from aqueous solution using alum and aluminum hydroxide.
    Georgantas DA; Grigoropoulou HP
    J Colloid Interface Sci; 2007 Nov; 315(1):70-9. PubMed ID: 17692328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The efficiency of electrocoagulation in treating wastewater from a dairy industry, part I: iron electrodes.
    Valente GF; Santos Mendonça RC; Pereira JA; Felix LB
    J Environ Sci Health B; 2012; 47(4):355-61. PubMed ID: 22428897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treatment and characterization of phosphorus from synthetic wastewater using aluminum plate electrodes in the electrocoagulation process.
    Tibebe D; Kassa Y; Bhaskarwar AN
    BMC Chem; 2019 Dec; 13(1):107. PubMed ID: 31428744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of tannery wastewater by electrocoagulation.
    Feng JW; Sun YB; Zheng Z; Zhang JB; Li S; Tian YC
    J Environ Sci (China); 2007; 19(12):1409-15. PubMed ID: 18277642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical treatment and operating cost analysis of textile wastewater using sacrificial iron electrodes.
    Kobya M; Demirbas E; Akyol A
    Water Sci Technol; 2009; 60(9):2261-70. PubMed ID: 19901457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling biofiltration process and electrocoagulation using magnesium-based anode for the treatment of landfill leachate.
    Oumar D; Patrick D; Gerardo B; Rino D; Ihsen BS
    J Environ Manage; 2016 Oct; 181():477-483. PubMed ID: 27420170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of oily wastewater of a gas refinery by electrocoagulation using aluminum electrodes.
    Saeedi M; Khalvati-Fahlyani A
    Water Environ Res; 2011 Mar; 83(3):256-64. PubMed ID: 21466073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical removal of Cr(VI) from aqueous media using iron and aluminum as electrode materials: towards a better understanding of the involved phenomena.
    Mouedhen G; Feki M; De Petris-Wery M; Ayedi HF
    J Hazard Mater; 2009 Sep; 168(2-3):983-91. PubMed ID: 19329251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus removal from synthetic and municipal wastewater using spent alum sludge.
    Georgantas DA; Grigoropoulou HP
    Water Sci Technol; 2005; 52(10-11):525-32. PubMed ID: 16459830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid processes for the treatment of cattle-slaughterhouse wastewater using aluminum and iron electrodes.
    Tezcan Un U; Koparal AS; Bakir Oğütveren U
    J Hazard Mater; 2009 May; 164(2-3):580-6. PubMed ID: 18819748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.