BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30337073)

  • 1. Tracking tumor boundary using point correspondence for adaptive radio therapy.
    Tahmasebi N; Boulanger P; Yun J; Fallone BG; Punithakumar K
    Comput Methods Programs Biomed; 2018 Oct; 165():187-195. PubMed ID: 30337073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lung tumor boundary tracking in MRI with moving mesh correspondences for adaptive radio therapy.
    Tahmasebi N; Boulanger P; Punithakumar K
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1264-1267. PubMed ID: 28268555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abdominal, multi-organ, auto-contouring method for online adaptive magnetic resonance guided radiotherapy: An intelligent, multi-level fusion approach.
    Liang F; Qian P; Su KH; Baydoun A; Leisser A; Van Hedent S; Kuo JW; Zhao K; Parikh P; Lu Y; Traughber BJ; Muzic RF
    Artif Intell Med; 2018 Aug; 90():34-41. PubMed ID: 30054121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracking tumor boundary in MV-EPID images without implanted markers: A feasibility study.
    Zhang X; Homma N; Ichiji K; Takai Y; Yoshizawa M
    Med Phys; 2015 May; 42(5):2510-23. PubMed ID: 25979044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated model-driven method for in-treatment upper airway motion tracking using cine MRI in head and neck radiation therapy.
    Li H; Chen HC; Dolly S; Li H; Fischer-Valuck B; Victoria J; Dempsey J; Ruan S; Anastasio M; Mazur T; Gach M; Kashani R; Green O; Rodriguez V; Gay H; Thorstad W; Mutic S
    Med Phys; 2016 Aug; 43(8):4700. PubMed ID: 27487887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Object-constrained meshless deformable algorithm for high speed 3D nonrigid registration between CT and CBCT.
    Chen T; Kim S; Goyal S; Jabbour S; Zhou J; Rajagopal G; Haffty B; Yue N
    Med Phys; 2010 Jan; 37(1):197-210. PubMed ID: 20175482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of automatic image segmentation algorithms for target tracking in MR-IGRT.
    Feng Y; Kawrakow I; Olsen J; Parikh PJ; Noel C; Wooten O; Du D; Mutic S; Hu Y
    J Appl Clin Med Phys; 2016 Mar; 17(2):441-460. PubMed ID: 27074465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of conventional and machine learning-based tumor auto-segmentation techniques using undersampled dynamic radial bSSFP acquisitions on a 0.35 T hybrid MR-linac system.
    Friedrich F; Hörner-Rieber J; Renkamp CK; Klüter S; Bachert P; Ladd ME; Knowles BR
    Med Phys; 2021 Feb; 48(2):587-596. PubMed ID: 33319394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technical aspects of real time positron emission tracking for gated radiotherapy.
    Chamberland M; McEwen MR; Xu T
    Med Phys; 2016 Feb; 43(2):783-95. PubMed ID: 26843241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Fully Convolutional Deep Neural Network for Lung Tumor Boundary Tracking in MRI.
    Tahmasebi N; Boulanger P; Noga M; Punithakumar K
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5906-5909. PubMed ID: 30441680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of segmentation and deformable registration methods applied to adaptive cervical cancer radiation therapy treatment planning.
    Ghose S; Holloway L; Lim K; Chan P; Veera J; Vinod SK; Liney G; Greer PB; Dowling J
    Artif Intell Med; 2015 Jun; 64(2):75-87. PubMed ID: 26025124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional quantitative evaluation method of nonrigid registration algorithms for adaptive radiotherapy.
    Rodriguez-Vila B; Gaya F; Garcia-Vicente F; Gomez EJ
    Med Phys; 2010 Mar; 37(3):1137-45. PubMed ID: 20384249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous nonrigid registration, segmentation, and tumor detection in MRI guided cervical cancer radiation therapy.
    Lu C; Chelikani S; Jaffray DA; Milosevic MF; Staib LH; Duncan JS
    IEEE Trans Med Imaging; 2012 Jun; 31(6):1213-27. PubMed ID: 22328178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving superficial target delineation in radiation therapy with endoscopic tracking and registration.
    Weersink RA; Qiu J; Hope AJ; Daly MJ; Cho BC; Dacosta RS; Sharpe MB; Breen SL; Chan H; Jaffray DA
    Med Phys; 2011 Dec; 38(12):6458-68. PubMed ID: 22149829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MRI-guided tumor tracking in lung cancer radiotherapy.
    Cerviño LI; Du J; Jiang SB
    Phys Med Biol; 2011 Jul; 56(13):3773-85. PubMed ID: 21628775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of respiratory tumour motion for real-time image-guided radiotherapy.
    Sharp GC; Jiang SB; Shimizu S; Shirato H
    Phys Med Biol; 2004 Feb; 49(3):425-40. PubMed ID: 15012011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suitability of markerless EPID tracking for tumor position verification in gated radiotherapy.
    Serpa M; Baier K; Cremers F; Guckenberger M; Meyer J
    Med Phys; 2014 Mar; 41(3):031702. PubMed ID: 24593706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking.
    Keall PJ; Joshi S; Vedam SS; Siebers JV; Kini VR; Mohan R
    Med Phys; 2005 Apr; 32(4):942-51. PubMed ID: 15895577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dense feature-based motion estimation in MV fluoroscopy during dynamic tumor tracking treatment: preliminary study on reduced aperture and partial occlusion handling.
    Serpa M; Bert C
    Phys Med Biol; 2020 Dec; 65(24):245039. PubMed ID: 33137794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 3D global-to-local deformable mesh model based registration and anatomy-constrained segmentation method for image guided prostate radiotherapy.
    Zhou J; Kim S; Jabbour S; Goyal S; Haffty B; Chen T; Levinson L; Metaxas D; Yue NJ
    Med Phys; 2010 Mar; 37(3):1298-308. PubMed ID: 20384267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.