These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 30337521)

  • 21. Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ.
    Aguado F; Espinosa-Parrilla JF; Carmona MA; Soriano E
    J Neurosci; 2002 Nov; 22(21):9430-44. PubMed ID: 12417668
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synaptic and nonsynaptic contributions to giant ipsps and ectopic spikes induced by 4-aminopyridine in the hippocampus in vitro.
    Traub RD; Bibbig R; Piechotta A; Draguhn R; Schmitz D
    J Neurophysiol; 2001 Mar; 85(3):1246-56. PubMed ID: 11247993
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional and molecular development of striatal fast-spiking GABAergic interneurons and their cortical inputs.
    Plotkin JL; Wu N; Chesselet MF; Levine MS
    Eur J Neurosci; 2005 Sep; 22(5):1097-108. PubMed ID: 16176351
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Astrocytes in 17beta-estradiol treated mixed hippocampal cultures show attenuated calcium response to neuronal activity.
    Rao SP; Sikdar SK
    Glia; 2006 Jun; 53(8):817-26. PubMed ID: 16565986
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Establishment of a Human Neuronal Network Assessment System by Using a Human Neuron/Astrocyte Co-Culture Derived from Fetal Neural Stem/Progenitor Cells.
    Fukushima K; Miura Y; Sawada K; Yamazaki K; Ito M
    J Biomol Screen; 2016 Jan; 21(1):54-64. PubMed ID: 26482803
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neuronal activity determines distinct gliotransmitter release from a single astrocyte.
    Covelo A; Araque A
    Elife; 2018 Jan; 7():. PubMed ID: 29380725
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of the t-SNARE SNAP-25 in action potential-dependent calcium signaling and expression in GABAergic and glutamatergic neurons.
    Tafoya LC; Shuttleworth CW; Yanagawa Y; Obata K; Wilson MC
    BMC Neurosci; 2008 Oct; 9():105. PubMed ID: 18959796
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation.
    Whittington MA; Traub RD; Jefferys JG
    Nature; 1995 Feb; 373(6515):612-5. PubMed ID: 7854418
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Glomerulus-specific, long-latency activity in the olfactory bulb granule cell network.
    Kapoor V; Urban NN
    J Neurosci; 2006 Nov; 26(45):11709-19. PubMed ID: 17093092
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cortical network modeling: analytical methods for firing rates and some properties of networks of LIF neurons.
    Tuckwell HC
    J Physiol Paris; 2006; 100(1-3):88-99. PubMed ID: 17064883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calcium permeable AMPA receptor-dependent long lasting plasticity of intrinsic excitability in fast spiking interneurons of the dentate gyrus decreases inhibition in the granule cell layer.
    Dasgupta D; Sikdar SK
    Hippocampus; 2015 Mar; 25(3):269-85. PubMed ID: 25252134
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Firing rate propagation through neuronal-astrocytic network.
    Liu Y; Li C
    IEEE Trans Neural Netw Learn Syst; 2013 May; 24(5):789-99. PubMed ID: 24808428
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transient enhancement of spike-evoked calcium signaling by a serotonergic interneuron.
    Hill ES; Sakurai A; Katz PS
    J Neurophysiol; 2008 Nov; 100(5):2919-28. PubMed ID: 18815341
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A quantitative model of purinergic junctional transmission of calcium waves in astrocyte networks.
    Bennett MR; Farnell L; Gibson WG
    Biophys J; 2005 Oct; 89(4):2235-50. PubMed ID: 16055527
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glutamate-induced glutamate release: a proposed mechanism for calcium bursting in astrocytes.
    Larter R; Craig MG
    Chaos; 2005 Dec; 15(4):047511. PubMed ID: 16396604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks.
    Tråvén HG; Brodin L; Lansner A; Ekeberg O; Wallén P; Grillner S
    J Neurophysiol; 1993 Aug; 70(2):695-709. PubMed ID: 8105036
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synaptic mechanisms of adenosine A2A receptor-mediated hyperexcitability in the hippocampus.
    Rombo DM; Newton K; Nissen W; Badurek S; Horn JM; Minichiello L; Jefferys JG; Sebastiao AM; Lamsa KP
    Hippocampus; 2015 May; 25(5):566-80. PubMed ID: 25402014
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GABAergic contributions to gating, timing, and phase precession of hippocampal neuronal activity during theta oscillations.
    Cutsuridis V; Hasselmo M
    Hippocampus; 2012 Jul; 22(7):1597-621. PubMed ID: 22252986
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational simulation: astrocyte-induced depolarization of neighboring neurons mediates synchronous UP states in a neural network.
    Kuriu T; Kakimoto Y; Araki O
    J Biol Phys; 2015 Sep; 41(4):377-90. PubMed ID: 25940565
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tonic regulation of stationary asynchronous firing of a neural network.
    Adamchik DA; Kazantsev VB
    J Comput Neurosci; 2017 Oct; 43(2):107-114. PubMed ID: 28509116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.