BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 30337524)

  • 41. Characterization of a bifunctional PutA homologue from Bradyrhizobium japonicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor.
    Krishnan N; Becker DF
    Biochemistry; 2005 Jun; 44(25):9130-9. PubMed ID: 15966737
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Daidzein reductase of Eggerthella sp. YY7918, its octameric subunit structure containing FMN/FAD/4Fe-4S, and its enantioselective production of R-dihydroisoflavones.
    Kawada Y; Goshima T; Sawamura R; Yokoyama SI; Yanase E; Niwa T; Ebihara A; Inagaki M; Yamaguchi K; Kuwata K; Kato Y; Sakurada O; Suzuki T
    J Biosci Bioeng; 2018 Sep; 126(3):301-309. PubMed ID: 29699942
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure and mechanism of the flavocytochrome c fumarate reductase of Shewanella putrefaciens MR-1.
    Leys D; Tsapin AS; Nealson KH; Meyer TE; Cusanovich MA; Van Beeumen JJ
    Nat Struct Biol; 1999 Dec; 6(12):1113-7. PubMed ID: 10581551
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exploration of the diaphorase activity of neutrophil NADPH oxidase.
    Poinas A; Gaillard J; Vignais P; Doussiere J
    Eur J Biochem; 2002 Feb; 269(4):1243-52. PubMed ID: 11856358
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interaction between the reductase Tah18 and highly conserved Fe-S containing Dre2 C-terminus is essential for yeast viability.
    Soler N; Delagoutte E; Miron S; Facca C; Baïlle D; d'Autreaux B; Craescu G; Frapart YM; Mansuy D; Baldacci G; Huang ME; Vernis L
    Mol Microbiol; 2011 Oct; 82(1):54-67. PubMed ID: 21902732
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biosynthesis of fosfomycin, re-examination and re-confirmation of a unique Fe(II)- and NAD(P)H-dependent epoxidation reaction.
    Yan F; Munos JW; Liu P; Liu HW
    Biochemistry; 2006 Sep; 45(38):11473-81. PubMed ID: 16981707
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Determination of the redox potentials and electron transfer properties of the FAD- and FMN-binding domains of the human oxidoreductase NR1.
    Finn RD; Basran J; Roitel O; Wolf CR; Munro AW; Paine MJ; Scrutton NS
    Eur J Biochem; 2003 Mar; 270(6):1164-75. PubMed ID: 12631275
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On the domain structure of cytochrome P450 102 (BM-3): isolation and properties of a 45-kDa FAD/NADP domain.
    Black SD
    Biochem Biophys Res Commun; 1994 Aug; 203(1):162-8. PubMed ID: 8074651
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Steap proteins are metalloreductases.
    Ohgami RS; Campagna DR; McDonald A; Fleming MD
    Blood; 2006 Aug; 108(4):1388-94. PubMed ID: 16609065
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spectroscopic properties of Escherichia coli UDP-N-acetylenolpyruvylglucosamine reductase.
    Axley MJ; Fairman R; Yanchunas J; Villafranca JJ; Robertson JG
    Biochemistry; 1997 Jan; 36(4):812-22. PubMed ID: 9020779
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Two hemes in Bacillus subtilis succinate:menaquinone oxidoreductase (complex II).
    Hägerhäll C; Aasa R; von Wachenfeldt C; Hederstedt L
    Biochemistry; 1992 Aug; 31(32):7411-21. PubMed ID: 1324713
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural and functional characterization of mercuric reductase from Lysinibacillus sphaericus strain G1.
    Bafana A; Khan F; Suguna K
    Biometals; 2017 Oct; 30(5):809-819. PubMed ID: 28894951
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mutagenesis of the redox-active disulfide in mercuric ion reductase: catalysis by mutant enzymes restricted to flavin redox chemistry.
    Distefano MD; Au KG; Walsh CT
    Biochemistry; 1989 Feb; 28(3):1168-83. PubMed ID: 2653436
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The family of berberine bridge enzyme-like enzymes: A treasure-trove of oxidative reactions.
    Daniel B; Konrad B; Toplak M; Lahham M; Messenlehner J; Winkler A; Macheroux P
    Arch Biochem Biophys; 2017 Oct; 632():88-103. PubMed ID: 28676375
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional interactions in cytochrome P450BM3. Evidence that NADP(H) binding controls redox potentials of the flavin cofactors.
    Murataliev MB; Feyereisen R
    Biochemistry; 2000 Oct; 39(41):12699-707. PubMed ID: 11027150
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Conformation-dependent hydride transfer in neuronal nitric oxide synthase reductase domain.
    Welland A; Daff S
    FEBS J; 2010 Sep; 277(18):3833-43. PubMed ID: 20718865
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cryo-EM Structures of Azospirillum brasilense Glutamate Synthase in Its Oligomeric Assemblies.
    Swuec P; Chaves-Sanjuan A; Camilloni C; Vanoni MA; Bolognesi M
    J Mol Biol; 2019 Nov; 431(22):4523-4526. PubMed ID: 31473159
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A novel NADPH-dependent reductase of Sulfobacillus acidophilus TPY phenol hydroxylase: expression, characterization, and functional analysis.
    Li M; Guo W; Chen X
    Appl Microbiol Biotechnol; 2016 Dec; 100(24):10417-10428. PubMed ID: 27376793
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Functional characterization and mechanism of action of recombinant human kynurenine 3-hydroxylase.
    Breton J; Avanzi N; Magagnin S; Covini N; Magistrelli G; Cozzi L; Isacchi A
    Eur J Biochem; 2000 Feb; 267(4):1092-9. PubMed ID: 10672018
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dissection of NADPH-cytochrome P450 oxidoreductase into distinct functional domains.
    Smith GC; Tew DG; Wolf CR
    Proc Natl Acad Sci U S A; 1994 Aug; 91(18):8710-4. PubMed ID: 8078947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.