These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 30337544)

  • 41. New records and modelling the impacts of climate change on the black-tailed marmosets.
    Gusmão AC; Evangelista-Vale JC; Pires-Oliveira JC; Barnett AA; da Silva OD
    PLoS One; 2021; 16(9):e0256270. PubMed ID: 34492030
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of climate change, invasive species, and disease on the distribution of native European crayfishes.
    Capinha C; Larson ER; Tricarico E; Olden JD; Gherardi F
    Conserv Biol; 2013 Aug; 27(4):731-40. PubMed ID: 23531056
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Examining current or future trade-offs for biodiversity conservation in north-eastern Australia.
    Reside AE; VanDerWal J; Moilanen A; Graham EM
    PLoS One; 2017; 12(2):e0172230. PubMed ID: 28222199
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Impacts of future climate and land cover changes on threatened mammals in the semi-arid Chinese Altai Mountains.
    Ye X; Yu X; Yu C; Tayibazhaer A; Xu F; Skidmore AK; Wang T
    Sci Total Environ; 2018 Jan; 612():775-787. PubMed ID: 28866405
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improving the use of species distribution models in conservation planning and management under climate change.
    Porfirio LL; Harris RM; Lefroy EC; Hugh S; Gould SF; Lee G; Bindoff NL; Mackey B
    PLoS One; 2014; 9(11):e113749. PubMed ID: 25420020
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Are plant species able to keep pace with the rapidly changing climate?
    Cunze S; Heydel F; Tackenberg O
    PLoS One; 2013; 8(7):e67909. PubMed ID: 23894290
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Projecting impacts of global climate and land-use scenarios on plant biodiversity using compositional-turnover modelling.
    Di Marco M; Harwood TD; Hoskins AJ; Ware C; Hill SLL; Ferrier S
    Glob Chang Biol; 2019 Aug; 25(8):2763-2778. PubMed ID: 31009149
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Potential future scenarios for Australia's native biodiversity given on-going increases in human population.
    Pepper DA; Lada H; Thomson JR; Bakar KS; Lake PS; Mac Nally R
    Sci Total Environ; 2017 Jan; 576():381-390. PubMed ID: 27792955
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Climate change induced range shifts of Galliformes in China.
    Li R; Tian H; Li X
    Integr Zool; 2010 Jun; 5(2):154-163. PubMed ID: 21392333
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dispersal, niche breadth and population extinction: colonization ratios predict range size in North American dragonflies.
    McCauley SJ; Davis CJ; Werner EE; Robeson MS
    J Anim Ecol; 2014 Jul; 83(4):858-65. PubMed ID: 24237364
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanistic models for the spatial spread of species under climate change.
    Leroux SJ; Larrivée M; Boucher-Lalonde V; Hurford A; Zuloaga J; Kerr JT; Lutscher F
    Ecol Appl; 2013 Jun; 23(4):815-28. PubMed ID: 23865232
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Historical species losses in bumblebee evolution.
    Condamine FL; Hines HM
    Biol Lett; 2015 Mar; 11(3):. PubMed ID: 25762572
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A framework for using niche models to estimate impacts of climate change on species distributions.
    Anderson RP
    Ann N Y Acad Sci; 2013 Sep; 1297():8-28. PubMed ID: 25098379
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Predictions of potential geographical distribution of Alhagi sparsifolia under climate change].
    Yang X; Zheng JH; Mu C; Lin J
    Zhongguo Zhong Yao Za Zhi; 2017 Feb; 42(3):450-455. PubMed ID: 28952248
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Protected area networks and savannah bird biodiversity in the face of climate change and land degradation.
    Beale CM; Baker NE; Brewer MJ; Lennon JJ
    Ecol Lett; 2013 Aug; 16(8):1061-8. PubMed ID: 23782913
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Using species distribution modelling to determine opportunities for trophic rewilding under future scenarios of climate change.
    Jarvie S; Svenning JC
    Philos Trans R Soc Lond B Biol Sci; 2018 Oct; 373(1761):. PubMed ID: 30348873
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Predicted climate-driven bird distribution changes and forecasted conservation conflicts in a neotropical savanna.
    Marini MA; Barbet-Massin M; Lopes LE; Jiguet F
    Conserv Biol; 2009 Dec; 23(6):1558-67. PubMed ID: 19500118
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modeling the potential distribution of Epiphyllum phyllanthus (L.) Haw. under future climate scenarios in the Caatinga biome.
    Cavalcante AMB; Duarte AS; Ometto JPHB
    An Acad Bras Cienc; 2020; 92(2):e20180836. PubMed ID: 32520218
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Projected range contractions of European protected oceanic montane plant communities: focus on climate change impacts is essential for their future conservation.
    Hodd RL; Bourke D; Skeffington MS
    PLoS One; 2014; 9(4):e95147. PubMed ID: 24752011
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Climate change and biological invasions: evidence, expectations, and response options.
    Hulme PE
    Biol Rev Camb Philos Soc; 2017 Aug; 92(3):1297-1313. PubMed ID: 27241717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.