BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 30337595)

  • 1. Statistical optimization of light intensity and CO
    Kim S; Moon M; Kwak M; Lee B; Chang YK
    Sci Rep; 2018 Oct; 8(1):15390. PubMed ID: 30337595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light intensity as major factor to maximize biomass and lipid productivity of Ettlia sp. in CO
    Seo SH; Ha JS; Yoo C; Srivastava A; Ahn CY; Cho DH; La HJ; Han MS; Oh HM
    Bioresour Technol; 2017 Nov; 244(Pt 1):621-628. PubMed ID: 28810216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple processes for optimized growth and harvest of Ettlia sp. by pH control using CO2 and light irradiation.
    Yoo C; La HJ; Kim SC; Oh HM
    Biotechnol Bioeng; 2015 Feb; 112(2):288-96. PubMed ID: 25182602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased biomass and lipid production of Ettlia sp. YC001 by optimized C and N sources in heterotrophic culture.
    Kim M; Lee B; Kim HS; Nam K; Moon M; Oh HM; Chang YK
    Sci Rep; 2019 May; 9(1):6830. PubMed ID: 31048751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the high lipid production potential of a thermotolerant microalga using statistical optimization and semi-continuous cultivation.
    Ho SH; Chen CN; Lai YY; Lu WB; Chang JS
    Bioresour Technol; 2014 Jul; 163():128-35. PubMed ID: 24796513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maximizing biomass productivity and CO2 biofixation of microalga, Scenedesmus sp. by using sodium hydroxide.
    Nayak M; Rath SS; Thirunavoukkarasu M; Panda PK; Mishra BK; Mohanty RC
    J Microbiol Biotechnol; 2013 Sep; 23(9):1260-8. PubMed ID: 23727795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of the growth environment of microalgae with high biomass and lipid productivity.
    Huang YT; Lee HT; Lai CW
    J Nanosci Nanotechnol; 2013 Mar; 13(3):2117-21. PubMed ID: 23755654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biphasic optimization approach for maximization of lipid production by the microalga Chlorella pyrenoidosa.
    Sukačová K; Búzová D; Červený J
    Folia Microbiol (Praha); 2020 Oct; 65(5):901-908. PubMed ID: 32415567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real time light intensity based carbon dioxide feeding for high cell-density microalgae cultivation and biodiesel production in a bubble column photobioreactor under outdoor natural sunlight.
    Naira VR; Das D; Maiti SK
    Bioresour Technol; 2019 Jul; 284():43-55. PubMed ID: 30925422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitigation of carbon dioxide by oleaginous microalgae for lipids and pigments production: Effect of light illumination and carbon dioxide feeding strategies.
    Thawechai T; Cheirsilp B; Louhasakul Y; Boonsawang P; Prasertsan P
    Bioresour Technol; 2016 Nov; 219():139-149. PubMed ID: 27484670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sugar-stimulated CO
    Fu W; Gudmundsson S; Wichuk K; Palsson S; Palsson BO; Salehi-Ashtiani K; Brynjólfsson S
    Sci Total Environ; 2019 Mar; 654():275-283. PubMed ID: 30445327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing carbon dioxide utilization for microalgae biofilm cultivation.
    Blanken W; Schaap S; Theobald S; Rinzema A; Wijffels RH; Janssen M
    Biotechnol Bioeng; 2017 Apr; 114(4):769-776. PubMed ID: 27748511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized co-production of lipids and carotenoids from Ettlia sp. by regulating stress conditions.
    Lee N; Ko SR; Ahn CY; Oh HM
    Bioresour Technol; 2018 Jun; 258():234-239. PubMed ID: 29525599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microalga
    Thepsuthammarat K; Reungsang A; Plangklang P
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO
    Mousavi S; Najafpour GD; Mohammadi M
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):30139-30150. PubMed ID: 30151786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microalga, Acutodesmus obliquus KGE 30 as a potential candidate for CO2 mitigation and biodiesel production.
    Yun HS; Ji MK; Park YT; Salama el-S; Choi J
    Environ Sci Pollut Res Int; 2016 Sep; 23(17):17831-9. PubMed ID: 27250092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.
    Yeh KL; Chang JS
    Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced lipid accumulation of photoautotrophic microalgae by high-dose CO2 mimics a heterotrophic characterization.
    Sun Z; Dou X; Wu J; He B; Wang Y; Chen YF
    World J Microbiol Biotechnol; 2016 Jan; 32(1):9. PubMed ID: 26712624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp.
    Pal D; Khozin-Goldberg I; Cohen Z; Boussiba S
    Appl Microbiol Biotechnol; 2011 May; 90(4):1429-41. PubMed ID: 21431397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new technology of CO2 supplementary for microalgae cultivation on large scale - A spraying absorption tower coupled with an outdoor open runway pond.
    Zhang CD; Li W; Shi YH; Li YG; Huang JK; Li HX
    Bioresour Technol; 2016 Jun; 209():351-9. PubMed ID: 26998713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.