These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
8. Droplet Impact Dynamics on Lubricant-Infused Superhydrophobic Surfaces: The Role of Viscosity Ratio. Kim JH; Rothstein JP Langmuir; 2016 Oct; 32(40):10166-10176. PubMed ID: 27622306 [TBL] [Abstract][Full Text] [Related]
9. Steerable directional bouncing and contact time reduction of impacting droplets on superhydrophobic stepped surfaces. Du J; Li Y; Wu X; Min Q J Colloid Interface Sci; 2023 Jan; 629(Pt A):1032-1044. PubMed ID: 36154970 [TBL] [Abstract][Full Text] [Related]
10. Effect of liquid droplet surface tension on impact dynamics over hierarchical nanostructure surfaces. Baek S; Moon HS; Kim W; Jeon S; Yong K Nanoscale; 2018 Sep; 10(37):17842-17851. PubMed ID: 30221273 [TBL] [Abstract][Full Text] [Related]
11. Predictive Model of Supercooled Water Droplet Pinning/Repulsion Impacting a Superhydrophobic Surface: The Role of the Gas-Liquid Interface Temperature. Mohammadi M; Tembely M; Dolatabadi A Langmuir; 2017 Feb; 33(8):1816-1825. PubMed ID: 28177630 [TBL] [Abstract][Full Text] [Related]
12. Viscous Droplet Impact on Nonwettable Textured Surfaces. Abolghasemibizaki M; Dilmaghani N; Mohammadi R; Castano CE Langmuir; 2019 Aug; 35(33):10752-10761. PubMed ID: 31339727 [TBL] [Abstract][Full Text] [Related]
13. Explosive Pancake Bouncing on Hot Superhydrophilic Surfaces. Liu M; Du H; Cheng Y; Zheng H; Jin Y; To S; Wang S; Wang Z ACS Appl Mater Interfaces; 2021 May; 13(20):24321-24328. PubMed ID: 33998790 [TBL] [Abstract][Full Text] [Related]
14. Towards the shortest possible contact time: Droplet impact on cylindrical superhydrophobic surfaces structured with macro-scale features. Abolghasemibizaki M; McMasters RL; Mohammadi R J Colloid Interface Sci; 2018 Jul; 521():17-23. PubMed ID: 29547785 [TBL] [Abstract][Full Text] [Related]
15. Bouncing Dynamics of Impact Droplets on the Biomimetic Plane and Convex Superhydrophobic Surfaces with Dual-Level and Three-Level Structures. Lian Z; Xu J; Ren W; Wang Z; Yu H Nanomaterials (Basel); 2019 Oct; 9(11):. PubMed ID: 31731520 [TBL] [Abstract][Full Text] [Related]
16. Induced detachment of coalescing droplets on superhydrophobic surfaces. Farhangi MM; Graham PJ; Choudhury NR; Dolatabadi A Langmuir; 2012 Jan; 28(2):1290-303. PubMed ID: 22171956 [TBL] [Abstract][Full Text] [Related]
17. Dynamic effects of bouncing water droplets on superhydrophobic surfaces. Jung YC; Bhushan B Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of droplet impact on hydrophobic/icephobic concrete with the potential for superhydrophobicity. Ramachandran R; Sobolev K; Nosonovsky M Langmuir; 2015 Feb; 31(4):1437-44. PubMed ID: 25574951 [TBL] [Abstract][Full Text] [Related]
19. Effect of Viscosity on Bouncing Dynamics of Elliptical Footprint Drops on Non-Wettable Ridged Surfaces. Yun S Polymers (Basel); 2021 Dec; 13(24):. PubMed ID: 34960845 [TBL] [Abstract][Full Text] [Related]
20. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition. Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]