These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 30338166)

  • 1. Wearable speckle plethysmography (SPG) for characterizing microvascular flow and resistance.
    Ghijsen M; Rice TB; Yang B; White SM; Tromberg BJ
    Biomed Opt Express; 2018 Aug; 9(8):3937-3952. PubMed ID: 30338166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of speckleplethysmographic (SPG) and photoplethysmographic (PPG) imaging by Monte Carlo simulations and
    Dunn CE; Lertsakdadet B; Crouzet C; Bahani A; Choi B
    Biomed Opt Express; 2018 Sep; 9(9):4306-4316. PubMed ID: 30615714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Camera-Derived Photoplethysmography (rPPG) and Speckle Plethysmography (rSPG): Comparing Reflective and Transmissive Mode at Various Integration Times Using LEDs and Lasers.
    Herranz Olazábal J; Wieringa F; Hermeling E; Van Hoof C
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison between Speckle Plethysmography and Photoplethysmography during Cold Pressor Test Referenced to Finger Arterial Pressure.
    Herranz Olazabal J; Lorato I; Kling J; Verhoeven M; Wieringa F; Van Hoof C; Verkruijsse W; Hermeling E
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing Remote Speckle Plethysmography and Finger-Clip Photoplethysmography with Non-Invasive Finger Arterial Pressure Pulse Waves, Regarding Morphology and Arrival Time.
    Herranz Olazabal J; Wieringa F; Hermeling E; Van Hoof C
    Bioengineering (Basel); 2023 Jan; 10(1):. PubMed ID: 36671673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous photoplethysmography and blood flow measurements towards the estimation of blood pressure using speckle contrast optical spectroscopy.
    Garrett A; Kim B; Sie EJ; Gurel NZ; Marsili F; Boas DA; Roblyer D
    Biomed Opt Express; 2023 Apr; 14(4):1594-1607. PubMed ID: 37078049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rolling shutter speckle plethysmography for quantitative cardiovascular monitoring.
    Lee Y; Byun S; Yi C; Jung J; Lee SA
    Biomed Opt Express; 2024 Mar; 15(3):1540-1552. PubMed ID: 38495693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulsatile blood flow in human bone assessed by laser-Doppler flowmetry and the interpretation of photoplethysmographic signals.
    Binzoni T; Tchernin D; Hyacinthe JN; Van De Ville D; Richiardi J
    Physiol Meas; 2013 Mar; 34(3):N25-40. PubMed ID: 23443008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical coherence tomography angiography measures blood pulsatile waveforms at variable tissue depths.
    Xie Z; Wang G; Cheng Y; Zhang Q; Le MN; Wang RK
    Quant Imaging Med Surg; 2021 Mar; 11(3):907-917. PubMed ID: 33654664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fiber-based laser speckle imaging for the detection of pulsatile flow.
    Regan C; Yang BY; Mayzel KC; Ramirez-San-Juan JC; Wilder-Smith P; Choi B
    Lasers Surg Med; 2015 Aug; 47(6):520-5. PubMed ID: 26202900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring of heart and respiratory rates in newborn infants using a new photoplethysmographic technique.
    Johansson A; Oberg PA; Sedin G
    J Clin Monit Comput; 1999 Dec; 15(7-8):461-7. PubMed ID: 12578044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of venous insufficiency using photoplethysmography: a comparison to strain gauge plethysmography.
    Hirai M; Yoshinaga M; Nakayama R
    Angiology; 1985 Nov; 36(11):795-801. PubMed ID: 4061968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoplethysmography of the distal pulp in the assessment of the vasospastic hand.
    Cooke ED; Bowcock SA; Smith AT
    Angiology; 1985 Jan; 36(1):33-40. PubMed ID: 4025918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the effect of source intensity profile on speckle contrast using coherent spatial frequency domain imaging.
    Rice TB; Konecky SD; Owen C; Choi B; Tromberg BJ
    Biomed Opt Express; 2012 Jun; 3(6):1340-9. PubMed ID: 22741080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-invasive continuous estimation of blood flow changes in human patellar bone.
    Näslund J; Pettersson J; Lundeberg T; Linnarsson D; Lindberg LG
    Med Biol Eng Comput; 2006 Jun; 44(6):501-9. PubMed ID: 16937201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plethysmographic arterial waveform strain discrimination by Fisher's method.
    Kucewicz JC; Huang L; Beach KW
    Ultrasound Med Biol; 2004 Jun; 30(6):773-82. PubMed ID: 15219957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly parallel, interferometric diffusing wave spectroscopy for monitoring cerebral blood flow dynamics.
    Zhou W; Kholiqov O; Chong SP; Srinivasan VJ
    Optica; 2018; 5(5):518-527. PubMed ID: 30417035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using time-frequency analysis of the photoplethysmographic waveform to detect the withdrawal of 900 mL of blood.
    Scully CG; Selvaraj N; Romberg FW; Wardhan R; Ryan J; Florian JP; Silverman DG; Shelley KH; Chon KH
    Anesth Analg; 2012 Jul; 115(1):74-81. PubMed ID: 22543068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast pulsatile blood flow measurement in deep tissue through a multimode detection fiber.
    Bi R; Du Y; Singh G; Ho CJ; Zhang S; Attia ABE; Li X; Olivo M
    J Biomed Opt; 2020 May; 25(5):1-10. PubMed ID: 32406214
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.