These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30338166)

  • 21. Capillary Blood Flow Monitoring Using Laser Speckle Contrast Analysis (LASCA).
    Briers JD; Richards G; He XW
    J Biomed Opt; 1999 Jan; 4(1):164-75. PubMed ID: 23015182
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Imaging functional blood vessels by the laser speckle imaging (LSI) technique using Q-statistics of the generalized differences algorithm.
    Ansari MZ; Cabrera H; Ramírez-Miquet EE
    Microvasc Res; 2016 Sep; 107():46-50. PubMed ID: 27154269
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Momentum transfer Monte Carlo for the simulation of laser speckle imaging and its application in the skin.
    Regan C; Hayakawa C; Choi B
    Biomed Opt Express; 2017 Dec; 8(12):5708-5723. PubMed ID: 29296499
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimized Signal Quality Assessment for Photoplethysmogram Signals Using Feature Selection.
    Mohagheghian F; Han D; Peitzsch A; Nishita N; Ding E; Dickson EL; DiMezza D; Otabil EM; Noorishirazi K; Scott J; Lessard D; Wang Z; Whitcomb C; Tran KV; Fitzgibbons TP; McManus DD; Chon KH
    IEEE Trans Biomed Eng; 2022 Sep; 69(9):2982-2993. PubMed ID: 35275809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The relationship between the photoplethysmographic waveform and systemic vascular resistance.
    Awad AA; Haddadin AS; Tantawy H; Badr TM; Stout RG; Silverman DG; Shelley KH
    J Clin Monit Comput; 2007 Dec; 21(6):365-72. PubMed ID: 17940842
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of different contacting pressure on the transfer function between finger photoplethysmographic and radial blood pressure waveforms.
    Hsiu H; Hsu CL; Wu TL
    Proc Inst Mech Eng H; 2011 Jun; 225(6):575-83. PubMed ID: 22034741
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoplethysmography.
    Alian AA; Shelley KH
    Best Pract Res Clin Anaesthesiol; 2014 Dec; 28(4):395-406. PubMed ID: 25480769
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative study of photoplethysmographic waveforms with application of antihypertensive medication in hypertensive patients.
    Hu Y; Hu A; Song S
    Ann Noninvasive Electrocardiol; 2022 May; 27(3):e12941. PubMed ID: 35239217
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Magnetomotive laser speckle imaging.
    Kim J; Oh J; Choi B
    J Biomed Opt; 2010; 15(1):011110. PubMed ID: 20210436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theory of Dynamic Pulsatile Spectroscopy for photoplethysmographic signals analysis.
    Rybynok VO; Kyriacou PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2652-5. PubMed ID: 24110272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints.
    Dunn JF; Forrester KR; Martin L; Tulip J; Bray RC
    Lasers Surg Med; 2011 Jan; 43(1):21-8. PubMed ID: 21254139
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoplethysmography and its application in clinical physiological measurement.
    Allen J
    Physiol Meas; 2007 Mar; 28(3):R1-39. PubMed ID: 17322588
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of Vascular Dynamics and Estimation of the Cardiac Output Waveform from Wearable PPG Sensors.
    McCombie D; Asada H; Reisner A
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():3490-3. PubMed ID: 17280976
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of central hypovolemia on photoplethysmographic waveform parameters in healthy volunteers part 2: frequency domain analysis.
    Alian AA; Galante NJ; Stachenfeld NS; Silverman DG; Shelley KH
    J Clin Monit Comput; 2011 Dec; 25(6):387-96. PubMed ID: 22057245
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photothermal laser speckle imaging.
    Regan C; Ramirez-San-Juan JC; Choi B
    Opt Lett; 2014 Sep; 39(17):5006-9. PubMed ID: 25166060
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving imaging depth by dynamic laser speckle imaging and topical optical clearing for in vivo blood flow monitoring.
    Sang X; Li D; Chen B
    Lasers Med Sci; 2021 Mar; 36(2):387-399. PubMed ID: 32557002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flux or speed? Examining speckle contrast imaging of vascular flows.
    Kazmi SM; Faraji E; Davis MA; Huang YY; Zhang XJ; Dunn AK
    Biomed Opt Express; 2015 Jul; 6(7):2588-608. PubMed ID: 26203384
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fast blood flow monitoring in deep tissues with real-time software correlators.
    Wang D; Parthasarathy AB; Baker WB; Gannon K; Kavuri V; Ko T; Schenkel S; Li Z; Li Z; Mullen MT; Detre JA; Yodh AG
    Biomed Opt Express; 2016 Mar; 7(3):776-97. PubMed ID: 27231588
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The relationship between the area of peripherally-derived pressure volume loops and systemic vascular resistance.
    Colquhoun D; Dunn LK; McMurry T; Thiele RH
    J Clin Monit Comput; 2013 Dec; 27(6):689-96. PubMed ID: 23881417
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of vascular compromise in the injured extremity: a photoplethysmographic technique.
    Smith DJ; Bendick PJ; Madison SA
    J Hand Surg Am; 1984 May; 9(3):314-9. PubMed ID: 6725887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.