BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 30338424)

  • 1. Comparative biosensing of glycosaminoglycan hyaluronic acid oligo- and polysaccharides using aerolysin and [Formula: see text]-hemolysin nanopores
    Fennouri A; Ramiandrisoa J; Bacri L; Mathé J; Daniel R
    Eur Phys J E Soft Matter; 2018 Oct; 41(10):127. PubMed ID: 30338424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single molecule detection of glycosaminoglycan hyaluronic acid oligosaccharides and depolymerization enzyme activity using a protein nanopore.
    Fennouri A; Przybylski C; Pastoriza-Gallego M; Bacri L; Auvray L; Daniel R
    ACS Nano; 2012 Nov; 6(11):9672-8. PubMed ID: 23046010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-dependent interaction of a 3-arm star poly(ethylene glycol) with two biological nanopores.
    Talarimoghari M; Baaken G; Hanselmann R; Behrends JC
    Eur Phys J E Soft Matter; 2018 Jun; 41(6):77. PubMed ID: 29926213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Insights into Distinct Detection Properties of α-Hemolysin, MspA, CsgG, and Aerolysin Nanopore Sensors.
    Zhou W; Qiu H; Guo Y; Guo W
    J Phys Chem B; 2020 Mar; 124(9):1611-1618. PubMed ID: 32027510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The analysis of single cysteine molecules with an aerolysin nanopore.
    Yuan B; Li S; Ying YL; Long YT
    Analyst; 2020 Feb; 145(4):1179-1183. PubMed ID: 31898708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal unfolding of proteins probed at the single molecule level using nanopores.
    Payet L; Martinho M; Pastoriza-Gallego M; Betton JM; Auvray L; Pelta J; Mathé J
    Anal Chem; 2012 May; 84(9):4071-6. PubMed ID: 22486207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing driving forces in aerolysin and α-hemolysin biological nanopores: electrophoresis versus electroosmosis.
    Boukhet M; Piguet F; Ouldali H; Pastoriza-Gallego M; Pelta J; Oukhaled A
    Nanoscale; 2016 Nov; 8(43):18352-18359. PubMed ID: 27762420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Essential Sensitive Regions of the Aerolysin Nanopore for Single Oligonucleotide Analysis.
    Wang YQ; Li MY; Qiu H; Cao C; Wang MB; Wu XY; Huang J; Ying YL; Long YT
    Anal Chem; 2018 Jul; 90(13):7790-7794. PubMed ID: 29882404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-molecule sensing of peptides and nucleic acids by engineered aerolysin nanopores.
    Cao C; Cirauqui N; Marcaida MJ; Buglakova E; Duperrex A; Radenovic A; Dal Peraro M
    Nat Commun; 2019 Oct; 10(1):4918. PubMed ID: 31664022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore.
    Cao C; Ying YL; Hu ZL; Liao DF; Tian H; Long YT
    Nat Nanotechnol; 2016 Aug; 11(8):713-8. PubMed ID: 27111839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Resolution Size-Discrimination of Single Nonionic Synthetic Polymers with a Highly Charged Biological Nanopore.
    Baaken G; Halimeh I; Bacri L; Pelta J; Oukhaled A; Behrends JC
    ACS Nano; 2015 Jun; 9(6):6443-9. PubMed ID: 26028280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of alpha-helical peptides through alpha-hemolysin and aerolysin pores.
    Stefureac R; Long YT; Kraatz HB; Howard P; Lee JS
    Biochemistry; 2006 Aug; 45(30):9172-9. PubMed ID: 16866363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanopore-Based Protein Identification.
    Afshar Bakshloo M; Kasianowicz JJ; Pastoriza-Gallego M; Mathé J; Daniel R; Piguet F; Oukhaled A
    J Am Chem Soc; 2022 Feb; 144(6):2716-2725. PubMed ID: 35120294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rationally Designed Sensing Selectivity and Sensitivity of an Aerolysin Nanopore via Site-Directed Mutagenesis.
    Wang YQ; Cao C; Ying YL; Li S; Wang MB; Huang J; Long YT
    ACS Sens; 2018 Apr; 3(4):779-783. PubMed ID: 29619834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrimination of neutral oligosaccharides through a nanopore.
    Bacri L; Oukhaled A; Hémon E; Bassafoula FB; Auvray L; Daniel R
    Biochem Biophys Res Commun; 2011 Sep; 412(4):561-4. PubMed ID: 21839725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore.
    Ouldali H; Sarthak K; Ensslen T; Piguet F; Manivet P; Pelta J; Behrends JC; Aksimentiev A; Oukhaled A
    Nat Biotechnol; 2020 Feb; 38(2):176-181. PubMed ID: 31844293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Sensing of Single Native RNA with a Single-Biomolecule Interface of Aerolysin Nanopore.
    Yang J; Wang YQ; Li MY; Ying YL; Long YT
    Langmuir; 2018 Dec; 34(49):14940-14945. PubMed ID: 30462509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerolysin, a Powerful Protein Sensor for Fundamental Studies and Development of Upcoming Applications.
    Cressiot B; Ouldali H; Pastoriza-Gallego M; Bacri L; Van der Goot FG; Pelta J
    ACS Sens; 2019 Mar; 4(3):530-548. PubMed ID: 30747518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Molecule Study of Peptides with the Same Amino Acid Composition but Different Sequences by Using an Aerolysin Nanopore.
    Hu F; Angelov B; Li S; Li N; Lin X; Zou A
    Chembiochem; 2020 Sep; 21(17):2467-2473. PubMed ID: 32274877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping the sensing spots of aerolysin for single oligonucleotides analysis.
    Cao C; Li MY; Cirauqui N; Wang YQ; Dal Peraro M; Tian H; Long YT
    Nat Commun; 2018 Jul; 9(1):2823. PubMed ID: 30026547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.