These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30338436)

  • 1. Rough-wall turbulent Taylor-Couette flow: The effect of the rib height.
    Verschoof RA; Zhu X; Bakhuis D; Huisman SG; Verzicco R; Sun C; Lohse D
    Eur Phys J E Soft Matter; 2018 Oct; 41(10):125. PubMed ID: 30338436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unified torque scaling in counter-rotating suspension Taylor-Couette flow.
    Alam M; Ghosh M
    Philos Trans A Math Phys Eng Sci; 2023 Mar; 381(2243):20220226. PubMed ID: 36709774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow regimes in a very wide-gap Taylor-Couette flow with counter-rotating cylinders.
    Merbold S; Hamede MH; Froitzheim A; Egbers C
    Philos Trans A Math Phys Eng Sci; 2023 May; 381(2246):20220113. PubMed ID: 36907212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Taylor-Couette flow in the narrow-gap limit.
    Nagata M
    Philos Trans A Math Phys Eng Sci; 2023 May; 381(2246):20220134. PubMed ID: 36907213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smooth and rough boundaries in turbulent Taylor-Couette flow.
    van den Berg TH; Doering CR; Lohse D; Lathrop DP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036307. PubMed ID: 14524890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Twente turbulent Taylor-Couette (T3C) facility: strongly turbulent (multiphase) flow between two independently rotating cylinders.
    van Gils DP; Bruggert GW; Lathrop DP; Sun C; Lohse D
    Rev Sci Instrum; 2011 Feb; 82(2):025105. PubMed ID: 21361631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Torque scaling in turbulent Taylor-Couette flow with co- and counterrotating cylinders.
    van Gils DP; Huisman SG; Bruggert GW; Sun C; Lohse D
    Phys Rev Lett; 2011 Jan; 106(2):024502. PubMed ID: 21405232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Torque measurements and numerical determination in differentially rotating wide gap Taylor-Couette flow.
    Merbold S; Brauckmann HJ; Egbers C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023014. PubMed ID: 23496617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady thermal convection representing the ultimate scaling.
    Motoki S; Kawahara G; Shimizu M
    Philos Trans A Math Phys Eng Sci; 2022 Jun; 380(2225):20210037. PubMed ID: 35465720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Second order structure functions for higher powers of turbulent velocity.
    Paraz F; Bandi MM
    J Phys Condens Matter; 2019 Dec; 31(48):484001. PubMed ID: 31387090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Curvature effects on the velocity profile in turbulent pipe flow.
    Grossmann S; Lohse D
    Eur Phys J E Soft Matter; 2017 Feb; 40(2):16. PubMed ID: 28188555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the origin of turbulent Taylor rolls.
    Jeganathan V; Alba K; Ostilla-Mónico R
    Philos Trans A Math Phys Eng Sci; 2023 Mar; 381(2243):20220130. PubMed ID: 36709783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer-induced drag enhancement in turbulent Taylor-Couette flows: direct numerical simulations and mechanistic insight.
    Liu N; Khomami B
    Phys Rev Lett; 2013 Sep; 111(11):114501. PubMed ID: 24074092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classical 1/3 scaling of convection holds up to Ra = 10
    Iyer KP; Scheel JD; Schumacher J; Sreenivasan KR
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7594-7598. PubMed ID: 32213591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulations of the evolution of Taylor cells from a growing boundary layer on the inner cylinder of a high radius ratio Taylor-Couette system.
    Batten WM; Bressloff NW; Turnock SR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066302. PubMed ID: 12513397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of an imposed axial flow on a Ferrofluidic Taylor-Couette flow.
    Altmeyer S; Do Y
    Sci Rep; 2019 Oct; 9(1):15438. PubMed ID: 31659226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Velocity-informed upper bounds on the convective heat transport induced by internal heat sources and sinks.
    Bouillaut V; Flesselles B; Miquel B; Aumaître S; Gallet B
    Philos Trans A Math Phys Eng Sci; 2022 Jun; 380(2225):20210034. PubMed ID: 35465716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shear strength of wet granular materials: Macroscopic cohesion and effective stress : Discrete numerical simulations, confronted to experimental measurements.
    Badetti M; Fall A; Chevoir F; Roux JN
    Eur Phys J E Soft Matter; 2018 May; 41(5):68. PubMed ID: 29802504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mean structure of the supercritical turbulent spiral in Taylor-Couette flow.
    Wang B; Mellibovsky F; Ayats R; Deguchi K; Meseguer A
    Philos Trans A Math Phys Eng Sci; 2023 May; 381(2246):20220112. PubMed ID: 36907214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spiral vortices and Taylor vortices in the annulus between rotating cylinders and the effect of an axial flow.
    Hoffmann Ch; Lücke M; Pinter A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056309. PubMed ID: 15244934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.