These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30338686)

  • 1. Machine Learning for Environmental Toxicology: A Call for Integration and Innovation.
    Miller TH; Gallidabino MD; MacRae JI; Hogstrand C; Bury NR; Barron LP; Snape JR; Owen SF
    Environ Sci Technol; 2018 Nov; 52(22):12953-12955. PubMed ID: 30338686
    [No Abstract]   [Full Text] [Related]  

  • 2. Machine learning in the identification, prediction and exploration of environmental toxicology: Challenges and perspectives.
    Wu X; Zhou Q; Mu L; Hu X
    J Hazard Mater; 2022 Sep; 438():129487. PubMed ID: 35816807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning Methods in Computational Toxicology.
    Baskin II
    Methods Mol Biol; 2018; 1800():119-139. PubMed ID: 29934890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing context-dependent call sequences employing machine learning methods: an indication of syntactic structure of greater horseshoe bats.
    Zhang K; Liu T; Liu M; Li A; Xiao Y; Metzner W; Liu Y
    J Exp Biol; 2019 Dec; 222(Pt 24):. PubMed ID: 31753908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning models for predicting endocrine disruption potential of environmental chemicals.
    Chierici M; Giulini M; Bussola N; Jurman G; Furlanello C
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):237-251. PubMed ID: 30628533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Machine Learning Applications to Accelerate Personalized Medicine in Breast Cancer: Rise of the Support Vector Machines.
    Ozer ME; Sarica PO; Arga KY
    OMICS; 2020 May; 24(5):241-246. PubMed ID: 32228365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning in Predictive Toxicology: Recent Applications and Future Directions for Classification Models.
    Wang MWH; Goodman JM; Allen TEH
    Chem Res Toxicol; 2021 Feb; 34(2):217-239. PubMed ID: 33356168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress in computational toxicology.
    Ekins S
    J Pharmacol Toxicol Methods; 2014; 69(2):115-40. PubMed ID: 24361690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enterprise Risk Assessment Based on Machine Learning.
    Huang B; Wei J; Tang Y; Liu C
    Comput Intell Neurosci; 2021; 2021():6049195. PubMed ID: 34824579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying Cancer Targets Based on Machine Learning Methods via Chou's 5-steps Rule and General Pseudo Components.
    Liang R; Xie J; Zhang C; Zhang M; Huang H; Huo H; Cao X; Niu B
    Curr Top Med Chem; 2019; 19(25):2301-2317. PubMed ID: 31622219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Similarity-based machine learning support vector machine predictor of drug-drug interactions with improved accuracies.
    Song D; Chen Y; Min Q; Sun Q; Ye K; Zhou C; Yuan S; Sun Z; Liao J
    J Clin Pharm Ther; 2019 Apr; 44(2):268-275. PubMed ID: 30565313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skin tear classification using machine learning from digital RGB image.
    Nagata T; Noyori SS; Noguchi H; Nakagami G; Kitamura A; Sanada H
    J Tissue Viability; 2021 Nov; 30(4):588-593. PubMed ID: 33902993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supervised machine learning for source allocation of per- and polyfluoroalkyl substances (PFAS) in environmental samples.
    Kibbey TCG; Jabrzemski R; O'Carroll DM
    Chemosphere; 2020 Aug; 252():126593. PubMed ID: 32443272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning Principles for Radiology Investigators.
    Borstelmann SM
    Acad Radiol; 2020 Jan; 27(1):13-25. PubMed ID: 31818379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review on machine learning methods for in silico toxicity prediction.
    Idakwo G; Luttrell J; Chen M; Hong H; Zhou Z; Gong P; Zhang C
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):169-191. PubMed ID: 30628866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Fast Reduced Kernel Extreme Learning Machine.
    Deng WY; Ong YS; Zheng QH
    Neural Netw; 2016 Apr; 76():29-38. PubMed ID: 26829605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between support vector machine and deep learning, machine-learning technologies for detecting epiretinal membrane using 3D-OCT.
    Sonobe T; Tabuchi H; Ohsugi H; Masumoto H; Ishitobi N; Morita S; Enno H; Nagasato D
    Int Ophthalmol; 2019 Aug; 39(8):1871-1877. PubMed ID: 30218173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TWSVR: Regression via Twin Support Vector Machine.
    Khemchandani R; Goyal K; Chandra S
    Neural Netw; 2016 Feb; 74():14-21. PubMed ID: 26624223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning for identification of surgeries with high risks of cancellation.
    Luo L; Zhang F; Yao Y; Gong R; Fu M; Xiao J
    Health Informatics J; 2020 Mar; 26(1):141-155. PubMed ID: 30518275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Silico Prediction of Chemicals Binding to Aromatase with Machine Learning Methods.
    Du H; Cai Y; Yang H; Zhang H; Xue Y; Liu G; Tang Y; Li W
    Chem Res Toxicol; 2017 May; 30(5):1209-1218. PubMed ID: 28414904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.