BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 30338997)

  • 21. 13C-13C and (15)N-(13)C correlation spectroscopy of membrane-associated and uniformly labeled human immunodeficiency virus and influenza fusion peptides: amino acid-type assignments and evidence for multiple conformations.
    Bodner ML; Gabrys CM; Struppe JO; Weliky DP
    J Chem Phys; 2008 Feb; 128(5):052319. PubMed ID: 18266436
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An extended combinatorial 15N, 13Cα, and 13C' labeling approach to protein backbone resonance assignment.
    Löhr F; Tumulka F; Bock C; Abele R; Dötsch V
    J Biomol NMR; 2015 Jul; 62(3):263-79. PubMed ID: 25953311
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A method for dynamic nuclear polarization enhancement of membrane proteins.
    Smith AN; Caporini MA; Fanucci GE; Long JR
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1542-6. PubMed ID: 25504310
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomolecular solid-state NMR spectroscopy at 1200 MHz: the gain in resolution.
    Callon M; Malär AA; Pfister S; Římal V; Weber ME; Wiegand T; Zehnder J; Chávez M; Cadalbert R; Deb R; Däpp A; Fogeron ML; Hunkeler A; Lecoq L; Torosyan A; Zyla D; Glockshuber R; Jonas S; Nassal M; Ernst M; Böckmann A; Meier BH
    J Biomol NMR; 2021 Jul; 75(6-7):255-272. PubMed ID: 34170475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identifying inter-residue resonances in crowded 2D (13)C- (13)C chemical shift correlation spectra of membrane proteins by solid-state MAS NMR difference spectroscopy.
    Miao Y; Cross TA; Fu R
    J Biomol NMR; 2013 Jul; 56(3):265-73. PubMed ID: 23708936
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cholesterol-Mediated Clustering of the HIV Fusion Protein gp41 in Lipid Bilayers.
    Tran N; Oh Y; Sutherland M; Cui Q; Hong M
    J Mol Biol; 2022 Jan; 434(2):167345. PubMed ID: 34762895
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective and extensive 13C labeling of a membrane protein for solid-state NMR investigations.
    Hong M; Jakes K
    J Biomol NMR; 1999 May; 14(1):71-4. PubMed ID: 10382307
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of High pH and Cholesterol on Single Arginine-Containing Transmembrane Peptide Helices.
    Thibado JK; Martfeld AN; Greathouse DV; Koeppe RE
    Biochemistry; 2016 Nov; 55(45):6337-6343. PubMed ID: 27782382
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural analysis of the intact polysaccharide mannan from Saccharomyces cerevisiae yeast using 1H and 13C NMR spectroscopy at 750 MHz.
    Vinogradov E; Petersen B; Bock K
    Carbohydr Res; 1998 Feb; 307(1-2):177-83. PubMed ID: 9658572
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conformation, dynamics, and insertion of a noncysteine-containing protegrin-1 analogue in lipid membranes from solid-state NMR spectroscopy.
    Mani R; Waring AJ; Hong M
    Chembiochem; 2007 Oct; 8(15):1877-84. PubMed ID: 17868158
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extensively sparse
    Tong Q; Tan H; Li J; Xie H; Zhao Y; Chen Y; Yang J
    J Biomol NMR; 2021 Jul; 75(6-7):245-254. PubMed ID: 34148188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Target of rapamycin FATC domain as a general membrane anchor: The FKBP-12 like domain of FKBP38 as a case study.
    De Cicco M; Milroy LG; Dames SA
    Protein Sci; 2018 Feb; 27(2):546-560. PubMed ID: 29024217
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Position of residues in transmembrane peptides with respect to the lipid bilayer: a combined lipid Noes and water chemical exchange approach in phospholipid bicelles.
    Glover KJ; Whiles JA; Vold RR; Melacini G
    J Biomol NMR; 2002 Jan; 22(1):57-64. PubMed ID: 11885981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solid-State Nuclear Magnetic Resonance Investigation of the Structural Topology and Lipid Interactions of a Viral Fusion Protein Chimera Containing the Fusion Peptide and Transmembrane Domain.
    Yao H; Lee M; Liao SY; Hong M
    Biochemistry; 2016 Dec; 55(49):6787-6800. PubMed ID: 27766858
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growth of influenza A virus is not impeded by simultaneous removal of the cholesterol-binding and acylation sites in the M2 protein.
    Thaa B; Tielesch C; Möller L; Schmitt AO; Wolff T; Bannert N; Herrmann A; Veit M
    J Gen Virol; 2012 Feb; 93(Pt 2):282-292. PubMed ID: 22012459
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic structure of membrane-anchored Arf*GTP.
    Liu Y; Kahn RA; Prestegard JH
    Nat Struct Mol Biol; 2010 Jul; 17(7):876-81. PubMed ID: 20601958
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cellular solid-state NMR investigation of a membrane protein using dynamic nuclear polarization.
    Yamamoto K; Caporini MA; Im SC; Waskell L; Ramamoorthy A
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt B):342-9. PubMed ID: 25017802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intrinsic membrane association of the cytoplasmic tail of influenza virus M2 protein and lateral membrane sorting regulated by cholesterol binding and palmitoylation.
    Thaa B; Levental I; Herrmann A; Veit M
    Biochem J; 2011 Aug; 437(3):389-97. PubMed ID: 21592088
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Site-directed rotational resonance solid-state NMR distance measurements probe structure and mechanism in the transmembrane domain of the serine bacterial chemoreceptor.
    Isaac B; Gallagher GJ; Balazs YS; Thompson LK
    Biochemistry; 2002 Mar; 41(9):3025-36. PubMed ID: 11863441
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solid-State NMR of highly
    Della Ripa LA; Petros ZA; Cioffi AG; Piehl DW; Courtney JM; Burke MD; Rienstra CM
    Methods; 2018 Apr; 138-139():47-53. PubMed ID: 29366688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.