BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30339344)

  • 21. Communication: Origin of the difference between carbon nanotube armchair and zigzag ends.
    Li Y; Ahuja R; Larsson JA
    J Chem Phys; 2014 Mar; 140(9):091102. PubMed ID: 24606345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons.
    Jia X; Hofmann M; Meunier V; Sumpter BG; Campos-Delgado J; Romo-Herrera JM; Son H; Hsieh YP; Reina A; Kong J; Terrones M; Dresselhaus MS
    Science; 2009 Mar; 323(5922):1701-5. PubMed ID: 19325109
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preferential oxidation-induced etching of zigzag edges in nanographene.
    Takashiro J; Kudo Y; Hao SJ; Takai K; Futaba DN; Enoki T; Kiguchi M
    Phys Chem Chem Phys; 2014 Oct; 16(39):21363-71. PubMed ID: 25179299
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Semiconducting edges and flake-shape evolution of monolayer GaSe: role of edge reconstructions.
    Wang N; Cao D; Wang J; Liang P; Chen X; Shu H
    Nanoscale; 2018 Jul; 10(25):12133-12140. PubMed ID: 29915839
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of the edge type and strain on the structural, electronic and magnetic properties of the BNRs.
    Bhattacharyya S; Kawazoe Y; Singhl AK
    J Nanosci Nanotechnol; 2012 Mar; 12(3):1899-902. PubMed ID: 22754996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preferential functionalization on zigzag graphene nanoribbons: first-principles calculations.
    Lee H
    J Phys Condens Matter; 2010 Sep; 22(35):352205. PubMed ID: 21403278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimentally engineering the edge termination of graphene nanoribbons.
    Zhang X; Yazyev OV; Feng J; Xie L; Tao C; Chen YC; Jiao L; Pedramrazi Z; Zettl A; Louie SG; Dai H; Crommie MF
    ACS Nano; 2013 Jan; 7(1):198-202. PubMed ID: 23194280
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene-like Molecules with Four Zigzag Edges.
    Gu Y; Wu X; Gopalakrishna TY; Phan H; Wu J
    Angew Chem Int Ed Engl; 2018 May; 57(22):6541-6545. PubMed ID: 29655220
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Raman spectra of graphene ribbons.
    Saito R; Furukawa M; Dresselhaus G; Dresselhaus MS
    J Phys Condens Matter; 2010 Aug; 22(33):334203. PubMed ID: 21386493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanographene and graphene edges: electronic structure and nanofabrication.
    Fujii S; Enoki T
    Acc Chem Res; 2013 Oct; 46(10):2202-10. PubMed ID: 24383129
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Edge State Engineering of Graphene Nanoribbons.
    Su X; Xue Z; Li G; Yu P
    Nano Lett; 2018 Sep; 18(9):5744-5751. PubMed ID: 30111118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pentagons and Heptagons on Edges of Graphene Nanoflakes Analyzed by X-ray Photoelectron and Raman Spectroscopy.
    Kim J; Lee N; Choi D; Kim DY; Kawai R; Yamada Y
    J Phys Chem Lett; 2021 Oct; 12(40):9955-9962. PubMed ID: 34617766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical characterization of X-ray absorption, emission, and photoelectron spectra of nitrogen doped along graphene edges.
    Wang X; Hou Z; Ikeda T; Oshima M; Kakimoto MA; Terakura K
    J Phys Chem A; 2013 Jan; 117(3):579-89. PubMed ID: 23270514
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stability of hydrogen-terminated graphene edges.
    Gao Y; Xu D; Cui T; Li D
    Phys Chem Chem Phys; 2021 Jun; 23(23):13261-13266. PubMed ID: 34095922
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition.
    Ma T; Ren W; Zhang X; Liu Z; Gao Y; Yin LC; Ma XL; Ding F; Cheng HM
    Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20386-91. PubMed ID: 24297886
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Graphene edges and beyond: temperature-driven structures and electromagnetic properties.
    Hyun C; Yun J; Cho WJ; Myung CW; Park J; Lee G; Lee Z; Kim K; Kim KS
    ACS Nano; 2015 May; 9(5):4669-74. PubMed ID: 26006783
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elongated Silicon-Carbon Bonds at Graphene Edges.
    Chen Q; Robertson AW; He K; Gong C; Yoon E; Kirkland AI; Lee GD; Warner JH
    ACS Nano; 2016 Jan; 10(1):142-9. PubMed ID: 26619146
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Edge phonons in black phosphorus.
    Ribeiro HB; Villegas CE; Bahamon DA; Muraca D; Castro Neto AH; de Souza EA; Rocha AR; Pimenta MA; de Matos CJ
    Nat Commun; 2016 Jul; 7():12191. PubMed ID: 27412813
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of the atomic structure on the Raman spectra of graphite edges.
    Cançado LG; Pimenta MA; Neves BR; Dantas MS; Jorio A
    Phys Rev Lett; 2004 Dec; 93(24):247401. PubMed ID: 15697858
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photoninduced charge redistribution of graphene determined by edge structures in the infrared region.
    Chai J; Mu X; Li J; Zhu L; Zhai K; Sun M; Li Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117858. PubMed ID: 31813728
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.