These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 30339362)
1. Thermal Imaging as a Noncontact Inline Process Analytical Tool for Product Temperature Monitoring during Continuous Freeze-Drying of Unit Doses. Van Bockstal PJ; Corver J; De Meyer L; Vervaet C; De Beer T Anal Chem; 2018 Nov; 90(22):13591-13599. PubMed ID: 30339362 [TBL] [Abstract][Full Text] [Related]
2. Fundamentals of freeze-drying. Nail SL; Jiang S; Chongprasert S; Knopp SA Pharm Biotechnol; 2002; 14():281-360. PubMed ID: 12189727 [TBL] [Abstract][Full Text] [Related]
3. Mechanistic modelling of infrared mediated energy transfer during the primary drying step of a continuous freeze-drying process. Van Bockstal PJ; Mortier ST; De Meyer L; Corver J; Vervaet C; Nopens I; De Beer T Eur J Pharm Biopharm; 2017 May; 114():11-21. PubMed ID: 28089785 [TBL] [Abstract][Full Text] [Related]
4. Noncontact Infrared-Mediated Heat Transfer During Continuous Freeze-Drying of Unit Doses. Van Bockstal PJ; De Meyer L; Corver J; Vervaet C; De Beer T J Pharm Sci; 2017 Jan; 106(1):71-82. PubMed ID: 27321237 [TBL] [Abstract][Full Text] [Related]
5. Modelling the primary drying step for the determination of the optimal dynamic heating pad temperature in a continuous pharmaceutical freeze-drying process for unit doses. De Meyer L; Lammens J; Mortier STFC; Vanbillemont B; Van Bockstal PJ; Corver J; Nopens I; Vervaet C; De Beer T Int J Pharm; 2017 Oct; 532(1):185-193. PubMed ID: 28887221 [TBL] [Abstract][Full Text] [Related]
6. Determination of the dried product resistance variability and its influence on the product temperature in pharmaceutical freeze-drying. Scutellà B; Trelea IC; Bourlès E; Fonseca F; Passot S Eur J Pharm Biopharm; 2018 Jul; 128():379-388. PubMed ID: 29746910 [TBL] [Abstract][Full Text] [Related]
7. Protein purification process engineering. Freeze drying: A practical overview. Gatlin LA; Nail SL Bioprocess Technol; 1994; 18():317-67. PubMed ID: 7764173 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of spin freezing versus conventional freezing as part of a continuous pharmaceutical freeze-drying concept for unit doses. De Meyer L; Van Bockstal PJ; Corver J; Vervaet C; Remon JP; De Beer T Int J Pharm; 2015 Dec; 496(1):75-85. PubMed ID: 25981618 [TBL] [Abstract][Full Text] [Related]
9. Temperature/end point monitoring and modelling of a batch freeze-drying process using an infrared camera. Harguindeguy M; Fissore D Eur J Pharm Biopharm; 2021 Jan; 158():113-122. PubMed ID: 33171203 [TBL] [Abstract][Full Text] [Related]
10. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products. Hottot A; Vessot S; Andrieu J PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546 [TBL] [Abstract][Full Text] [Related]
11. On the Use of Infrared Thermography for Monitoring a Vial Freeze-Drying Process. Lietta E; Colucci D; Distefano G; Fissore D J Pharm Sci; 2019 Jan; 108(1):391-398. PubMed ID: 30077699 [TBL] [Abstract][Full Text] [Related]
12. Determination of ice interface temperature, sublimation rate and the dried product resistance, and its application in the assessment of microcollapse using through-vial impedance spectroscopy. Jeeraruangrattana Y; Smith G; Polygalov E; Ermolina I Eur J Pharm Biopharm; 2020 Jul; 152():144-163. PubMed ID: 32353532 [TBL] [Abstract][Full Text] [Related]
13. Freeze-drying: A relevant unit operation in the manufacture of foods, nutritional products, and pharmaceuticals. Assegehegn G; Brito-de la Fuente E; Franco JM; Gallegos C Adv Food Nutr Res; 2020; 93():1-58. PubMed ID: 32711860 [TBL] [Abstract][Full Text] [Related]
14. In-line and real-time process monitoring of a freeze drying process using Raman and NIR spectroscopy as complementary process analytical technology (PAT) tools. De Beer TR; Vercruysse P; Burggraeve A; Quinten T; Ouyang J; Zhang X; Vervaet C; Remon JP; Baeyens WR J Pharm Sci; 2009 Sep; 98(9):3430-46. PubMed ID: 19130604 [TBL] [Abstract][Full Text] [Related]
15. A primary drying model-based comparison of conventional batch freeze-drying to continuous spin-freeze-drying for unit doses. Leys L; Vanbillemont B; Van Bockstal PJ; Lammens J; Nuytten G; Corver J; Vervaet C; De Beer T Eur J Pharm Biopharm; 2020 Dec; 157():97-107. PubMed ID: 33053425 [TBL] [Abstract][Full Text] [Related]
16. A NIR-Based Study of Desorption Kinetics during Continuous Spin Freeze-Drying. Leys L; Nuytten G; Lammens J; Van Bockstal PJ; Corver J; Vervaet C; De Beer T Pharmaceutics; 2021 Dec; 13(12):. PubMed ID: 34959449 [TBL] [Abstract][Full Text] [Related]
17. Influence of controlled ice nucleation on the freeze-drying of pharmaceutical products: the secondary drying step. Oddone I; Barresi AA; Pisano R Int J Pharm; 2017 May; 524(1-2):134-140. PubMed ID: 28363858 [TBL] [Abstract][Full Text] [Related]
18. Temperature Measurement by Sublimation Rate as a Process Analytical Technology Tool in Lyophilization. Kawasaki H; Shimanouchi T; Sawada H; Hosomi H; Hamabe Y; Kimura Y J Pharm Sci; 2019 Jul; 108(7):2305-2314. PubMed ID: 30825460 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of a PAT-based in-line control system for a continuous spin freeze-drying process. Leys L; Nuytten G; Van Bockstal PJ; De Beer T Int J Pharm; 2023 Jun; 641():123062. PubMed ID: 37209792 [TBL] [Abstract][Full Text] [Related]
20. The application of dual-electrode through vial impedance spectroscopy for the determination of ice interface temperatures, primary drying rate and vial heat transfer coefficient in lyophilization process development. Smith G; Jeeraruangrattana Y; Ermolina I Eur J Pharm Biopharm; 2018 Sep; 130():224-235. PubMed ID: 29940225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]