These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30339373)

  • 1. Structural Fingerprinting of Protein Aggregates by Dynamic Nuclear Polarization-Enhanced Solid-State NMR at Natural Isotopic Abundance.
    Smith AN; Märker K; Piretra T; Boatz JC; Matlahov I; Kodali R; Hediger S; van der Wel PCA; De Paëpe G
    J Am Chem Soc; 2018 Nov; 140(44):14576-14580. PubMed ID: 30339373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solid-State Nuclear Magnetic Resonance on the Static and Dynamic Domains of Huntingtin Exon-1 Fibrils.
    Isas JM; Langen R; Siemer AB
    Biochemistry; 2015 Jun; 54(25):3942-9. PubMed ID: 26020223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective observation of semi-rigid non-core residues in dynamically complex mutant huntingtin protein fibrils.
    Matlahov I; Boatz JC; van der Wel PCA
    J Struct Biol X; 2022; 6():100077. PubMed ID: 36419510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and Structure of Wild Type Huntingtin Exon-1 Fibrils.
    Isas JM; Langen A; Isas MC; Pandey NK; Siemer AB
    Biochemistry; 2017 Jul; 56(28):3579-3586. PubMed ID: 28621522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and Dynamics of the Huntingtin Exon-1 N-Terminus: A Solution NMR Perspective.
    Baias M; Smith PE; Shen K; Joachimiak LA; Żerko S; Koźmiński W; Frydman J; Frydman L
    J Am Chem Soc; 2017 Jan; 139(3):1168-1176. PubMed ID: 28085263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dynamics of early-state transcriptional changes and aggregate formation in a Huntington's disease cell model.
    van Hagen M; Piebes DGE; de Leeuw WC; Vuist IM; van Roon-Mom WMC; Moerland PD; Verschure PJ
    BMC Genomics; 2017 May; 18(1):373. PubMed ID: 28499347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of the Proline-Rich C-Terminus of Huntingtin Exon-1 Fibrils.
    Caulkins BG; Cervantes SA; Isas JM; Siemer AB
    J Phys Chem B; 2018 Oct; 122(41):9507-9515. PubMed ID: 30252478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation landscapes of Huntingtin exon 1 protein fragments and the critical repeat length for the onset of Huntington's disease.
    Chen M; Wolynes PG
    Proc Natl Acad Sci U S A; 2017 Apr; 114(17):4406-4411. PubMed ID: 28400517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysical Aspect of Huntingtin Protein During polyQ: An In Silico Insight.
    Gopalakrishnan C; Jethi S; Kalsi N; Purohit R
    Cell Biochem Biophys; 2016 Jun; 74(2):129-39. PubMed ID: 27094178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural Isotopic Abundance
    Smith AN; Märker K; Hediger S; De Paëpe G
    J Phys Chem Lett; 2019 Aug; 10(16):4652-4662. PubMed ID: 31361489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protofilament Structure and Supramolecular Polymorphism of Aggregated Mutant Huntingtin Exon 1.
    Boatz JC; Piretra T; Lasorsa A; Matlahov I; Conway JF; van der Wel PCA
    J Mol Biol; 2020 Jul; 432(16):4722-4744. PubMed ID: 32598938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unambiguous assignment of short- and long-range structural restraints by solid-state NMR spectroscopy with segmental isotope labeling.
    Schubeis T; Lührs T; Ritter C
    Chembiochem; 2015 Jan; 16(1):51-4. PubMed ID: 25394265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fibril polymorphism affects immobilized non-amyloid flanking domains of huntingtin exon1 rather than its polyglutamine core.
    Lin HK; Boatz JC; Krabbendam IE; Kodali R; Hou Z; Wetzel R; Dolga AM; Poirier MA; van der Wel PCA
    Nat Commun; 2017 May; 8():15462. PubMed ID: 28537272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Herp Promotes Degradation of Mutant Huntingtin: Involvement of the Proteasome and Molecular Chaperones.
    Luo H; Cao L; Liang X; Du A; Peng T; Li H
    Mol Neurobiol; 2018 Oct; 55(10):7652-7668. PubMed ID: 29430620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly and sequence length dependence on nanofibrils of polyglutamine peptides.
    Inayathullah M; Tan A; Jeyaraj R; Lam J; Cho NJ; Liu CW; Manoukian MA; Ashkan K; Mahmoudi M; Rajadas J
    Neuropeptides; 2016 Jun; 57():71-83. PubMed ID: 26874369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale studies link amyloid maturity with polyglutamine diseases onset.
    Ruggeri FS; Vieweg S; Cendrowska U; Longo G; Chiki A; Lashuel HA; Dietler G
    Sci Rep; 2016 Aug; 6():31155. PubMed ID: 27499269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins.
    Huang CC; Faber PW; Persichetti F; Mittal V; Vonsattel JP; MacDonald ME; Gusella JF
    Somat Cell Mol Genet; 1998 Jul; 24(4):217-33. PubMed ID: 10410676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue transglutaminase does not contribute to the formation of mutant huntingtin aggregates.
    Chun W; Lesort M; Tucholski J; Ross CA; Johnson GV
    J Cell Biol; 2001 Apr; 153(1):25-34. PubMed ID: 11285271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of Chaperone-Mediated Effects on Polyglutamine Protein Aggregation by the Filter Trap Assay.
    van Waarde-Verhagen MAWH; Kampinga HH
    Methods Mol Biol; 2018; 1709():59-74. PubMed ID: 29177651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of neuron-specific huntingtin aggregates in human huntingtin knock-in mice.
    Sawada H; Ishiguro H; Nishii K; Yamada K; Tsuchida K; Takahashi H; Goto J; Kanazawa I; Nagatsu T
    Neurosci Res; 2007 Apr; 57(4):559-73. PubMed ID: 17335925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.