These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 30339408)
21. Antioxidant activity and sensory characteristics of Maillard reaction products derived from different peptide fractions of soybean meal hydrolysate. Yu M; He S; Tang M; Zhang Z; Zhu Y; Sun H Food Chem; 2018 Mar; 243():249-257. PubMed ID: 29146335 [TBL] [Abstract][Full Text] [Related]
22. Conditions for the formation of dilysyl-dipyrrolones A and B, and novel yellow dipyrrolone derivatives formed from xylose and amino acids in the presence of lysine. Nomi Y; Sakamoto J; Takenaka M; Ono H; Murata M Biosci Biotechnol Biochem; 2011; 75(2):221-6. PubMed ID: 21307606 [TBL] [Abstract][Full Text] [Related]
23. Effect of xylose on the molecular and particle size distribution of peanut hydrolysate in Maillard reaction system. Su G; Cui C; Ren J; Yang B; Zhao M J Sci Food Agric; 2011 Oct; 91(13):2457-62. PubMed ID: 21674506 [TBL] [Abstract][Full Text] [Related]
24. Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst. Li H; Deng A; Ren J; Liu C; Lu Q; Zhong L; Peng F; Sun R Bioresour Technol; 2014 Apr; 158():313-20. PubMed ID: 24632409 [TBL] [Abstract][Full Text] [Related]
25. The optimization of formic acid hydrolysis of xylose in furfural production. Yang W; Li P; Bo D; Chang H Carbohydr Res; 2012 Aug; 357():53-61. PubMed ID: 22703600 [TBL] [Abstract][Full Text] [Related]
26. Browning of Maillard reaction systems containing xylose and 4-hydroxy-5-methyl-3(2H)-furanone. Nakamura M; Mikami Y; Noda K; Murata M Biosci Biotechnol Biochem; 2021 Feb; 85(2):401-410. PubMed ID: 33604624 [TBL] [Abstract][Full Text] [Related]
27. Aqueous Preparation of Maillard Reaction Intermediate from Glutathione and Xylose and its Volatile Formation During Thermal Treatment. Sun F; Cui H; Zhan H; Xu M; Hayat K; Tahir MU; Hussain S; Zhang X; Ho CT J Food Sci; 2019 Dec; 84(12):3584-3593. PubMed ID: 31721210 [TBL] [Abstract][Full Text] [Related]
28. Degradation kinetics of sugars (glucose and xylose), amino acids (proline and aspartic acid) and their binary mixtures in subcritical water: Effect of Maillard reaction. Alonso-Riaño P; Illera AE; Benito-Román O; Melgosa R; Bermejo-López A; Beltrán S; Sanz MT Food Chem; 2024 Jun; 442():138421. PubMed ID: 38244443 [TBL] [Abstract][Full Text] [Related]
29. Identification of 5-hydroxy-3-mercapto-2-pentanone in the maillard reaction of thiamine, cysteine, and xylose. Cerny C; Guntz-Dubini R J Agric Food Chem; 2008 Nov; 56(22):10679-82. PubMed ID: 18983164 [TBL] [Abstract][Full Text] [Related]
30. Acid-catalyzed conversion of xylose in methanol-rich medium as part of biorefinery. Hu X; Lievens C; Li CZ ChemSusChem; 2012 Aug; 5(8):1427-34. PubMed ID: 22730169 [TBL] [Abstract][Full Text] [Related]
31. Meat flavor generation from different composition patterns of initial Maillard stage intermediates formed in heated cysteine-xylose-glycine reaction systems. Zhao J; Wang T; Xie J; Xiao Q; Du W; Wang Y; Cheng J; Wang S Food Chem; 2019 Feb; 274():79-88. PubMed ID: 30373010 [TBL] [Abstract][Full Text] [Related]
32. Dehydration of xylose to furfural over MCM-41-supported niobium-oxide catalysts. García-Sancho C; Sádaba I; Moreno-Tost R; Mérida-Robles J; Santamaría-González J; López-Granados M; Maireles-Torres P ChemSusChem; 2013 Apr; 6(4):635-42. PubMed ID: 23512820 [TBL] [Abstract][Full Text] [Related]
33. Utilization and optimization of a waste stream cellulose culture medium for pigment production by Penicillium spp. Sopandi T; Wardah A; Surtiningsih T; Suwandi A; Smith JJ J Appl Microbiol; 2013 Mar; 114(3):733-45. PubMed ID: 23279152 [TBL] [Abstract][Full Text] [Related]
34. Furfural production from biomass pretreatment hydrolysate using vapor-releasing reactor system. Liu L; Chang HM; Jameel H; Park S Bioresour Technol; 2018 Mar; 252():165-171. PubMed ID: 29324276 [TBL] [Abstract][Full Text] [Related]
35. Structured fluids as microreactors for flavor formation by the Maillard reaction. Vauthey S; Milo C; Frossard P; Garti N; Leser ME; Watzke HJ J Agric Food Chem; 2000 Oct; 48(10):4808-16. PubMed ID: 11052737 [TBL] [Abstract][Full Text] [Related]
36. Effect of glycine on reaction of cysteine-xylose: Insights on initial Maillard stage intermediates to develop meat flavor. Cao C; Xie J; Hou L; Zhao J; Chen F; Xiao Q; Zhao M; Fan M Food Res Int; 2017 Sep; 99(Pt 1):444-453. PubMed ID: 28784504 [TBL] [Abstract][Full Text] [Related]
37. Hydrolysis of sorghum straw using phosphoric acid: evaluation of furfural production. Vázquez M; Oliva M; Téllez-Luis SJ; Ramírez JA Bioresour Technol; 2007 Nov; 98(16):3053-60. PubMed ID: 17145181 [TBL] [Abstract][Full Text] [Related]
38. The effect of sugar, amino acid, metal ion, and NaCl on model Maillard reaction under pH control. Kwak EJ; Lim SI Amino Acids; 2004 Aug; 27(1):85-90. PubMed ID: 15309575 [TBL] [Abstract][Full Text] [Related]
39. Synthesis of furfural from xylose, xylan, and biomass using AlCl3·6H2O in biphasic media via xylose isomerization to xylulose. Yang Y; Hu CW; Abu-Omar MM ChemSusChem; 2012 Feb; 5(2):405-10. PubMed ID: 22315196 [TBL] [Abstract][Full Text] [Related]
40. Thiamine, cysteine and xylose added to the Maillard reaction of goat protein hydrolysate potentiates the formation of meat flavoring compounds. de Sousa Fontes VM; de Sousa Galvão M; Moreira de Carvalho L; do Nascimento Guedes FL; Dos Santos Lima M; Alencar Bezerra TK; Madruga MS Food Chem; 2024 Jul; 445():138398. PubMed ID: 38394903 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]