These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 30339450)

  • 1. Grain Boundary Sliding and Amorphization are Responsible for the Reverse Hall-Petch Relation in Superhard Nanocrystalline Boron Carbide.
    Guo D; Song S; Luo R; Goddard WA; Chen M; Reddy KM; An Q
    Phys Rev Lett; 2018 Oct; 121(14):145504. PubMed ID: 30339450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical Properties and Deformation Behavior of Superhard Lightweight Nanocrystalline Ceramics.
    Jeong B; Lahkar S; An Q; Reddy KM
    Nanomaterials (Basel); 2022 Sep; 12(18):. PubMed ID: 36145016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Below the Hall-Petch Limit in Nanocrystalline Ceramics.
    Ryou H; Drazin JW; Wahl KJ; Qadri SB; Gorzkowski EP; Feigelson BN; Wollmershauser JA
    ACS Nano; 2018 Apr; 12(4):3083-3094. PubMed ID: 29493218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A crossover in the mechanical response of nanocrystalline ceramics.
    Szlufarska I; Nakano A; Vashishta P
    Science; 2005 Aug; 309(5736):911-4. PubMed ID: 16081730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear-Induced Brittle Failure along Grain Boundaries in Boron Carbide.
    Yang X; Coleman SP; Lasalvia JC; Goddard WA; An Q
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):5072-5080. PubMed ID: 29346723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The shear response of copper bicrystals with Σ11 symmetric and asymmetric tilt grain boundaries by molecular dynamics simulation.
    Zhang L; Lu C; Tieu K; Zhao X; Pei L
    Nanoscale; 2015 Apr; 7(16):7224-33. PubMed ID: 25811909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasticity without dislocations in a polycrystalline intermetallic.
    Luo H; Sheng H; Zhang H; Wang F; Fan J; Du J; Ping Liu J; Szlufarska I
    Nat Commun; 2019 Aug; 10(1):3587. PubMed ID: 31399566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomistic Origin of Brittle Failure of Boron Carbide from Large-Scale Reactive Dynamics Simulations: Suggestions toward Improved Ductility.
    An Q; Goddard WA
    Phys Rev Lett; 2015 Sep; 115(10):105501. PubMed ID: 26382683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic Simulations of Grain Structures and Deformation Behaviors in Nanocrystalline CoCrFeNiMn High-Entropy Alloy.
    Hou J; Li Q; Wu C; Zheng L
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced mechanical properties of nanocrystalline boron carbide by nanoporosity and interface phases.
    Madhav Reddy K; Guo JJ; Shinoda Y; Fujita T; Hirata A; Singh JP; McCauley JW; Chen MW
    Nat Commun; 2012; 3():1052. PubMed ID: 22968698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compression deformation of WC: atomistic description of hard ceramic material.
    Feng Q; Song X; Liu X; Liang S; Wang H; Nie Z
    Nanotechnology; 2017 Nov; 28(47):475709. PubMed ID: 29016362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative grain boundary sliding and migration process in nanocrystalline solids.
    Bobylev SV; Morozov NF; Ovid'ko IA
    Phys Rev Lett; 2010 Jul; 105(5):055504. PubMed ID: 20867932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimillion atom simulations of dynamics of oxidation of an aluminum nanoparticle and nanoindentation on ceramics.
    Vashishta P; Kalia RK; Nakano A
    J Phys Chem B; 2006 Mar; 110(8):3727-33. PubMed ID: 16494430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the deformation mechanisms of boron carbide via silicon doping.
    Xiang S; Ma L; Yang B; Dieudonne Y; Pharr GM; Lu J; Yadav D; Hwang C; LaSalvia JC; Haber RA; Hemker KJ; Xie KY
    Sci Adv; 2019 Oct; 5(10):eaay0352. PubMed ID: 31692742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanocrystalline Cubic Silicon Carbide: A Route to Superhardness.
    Sun R; Wei X; Hu W; Ying P; Wu Y; Wang L; Chen S; Zhang X; Ma M; Yu D; Wang L; Gao G; Xu B; Tian Y
    Small; 2022 Jun; 18(22):e2201212. PubMed ID: 35396819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleation of amorphous shear bands at nanotwins in boron suboxide.
    An Q; Reddy KM; Qian J; Hemker KJ; Chen MW; Goddard WA
    Nat Commun; 2016 Mar; 7():11001. PubMed ID: 27001922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and simulation of boron-doped nanocrystalline silicon carbide thin film by a field theory.
    Xiong L; Chen Y; Lee JD
    J Nanosci Nanotechnol; 2009 Feb; 9(2):1034-7. PubMed ID: 19441448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructure evolution and the deformation mechanism in nanocrystalline superior-deformed tantalum.
    Li P; Wang A; Qi M; Zhao C; Li Z; Zhanhong W; Koval V; Yan H
    Nanoscale; 2024 Feb; 16(9):4826-4840. PubMed ID: 38312054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superhardness in nanotwinned boron carbide: a molecular dynamics study.
    Shi L; Zhang H; Ma X; Yang L; Zhong Y; He X
    Phys Chem Chem Phys; 2023 Jul; 25(29):19585-19595. PubMed ID: 37435693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The microstructures and mechanical properties of nanocrystalline Li
    Shen YH; Yu Y; Kong XG; Deng J; Tian XF; Liang YJ
    RSC Adv; 2021 Mar; 11(17):9874-9879. PubMed ID: 35423520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.