These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 30339535)
1. Dynamic air supply models add realism to the evaluation of control strategies in water resource recovery facilities. Juan-García P; Kiser MA; Schraa O; Rieger L; Corominas L Water Sci Technol; 2018 Oct; 78(5-6):1104-1114. PubMed ID: 30339535 [TBL] [Abstract][Full Text] [Related]
2. Development of a model for activated sludge aeration systems: linking air supply, distribution, and demand. Schraa O; Rieger L; Alex J Water Sci Technol; 2017 Feb; 75(3-4):552-560. PubMed ID: 28192349 [TBL] [Abstract][Full Text] [Related]
3. A framework for model-based assessment of resilience in water resource recovery facilities against power outage. Juan-García P; Rieger L; Darch G; Schraa O; Corominas L Water Res; 2021 Sep; 202():117459. PubMed ID: 34358908 [TBL] [Abstract][Full Text] [Related]
4. Modelling energy costs for different operational strategies of a large water resource recovery facility. Póvoa P; Oehmen A; Inocêncio P; Matos JS; Frazão A Water Sci Technol; 2017 May; 75(9-10):2139-2148. PubMed ID: 28498126 [TBL] [Abstract][Full Text] [Related]
5. A realistic dynamic blower energy consumption model for wastewater applications. Amerlinck Y; De Keyser W; Urchegui G; Nopens I Water Sci Technol; 2016 Oct; 74(7):1561-1576. PubMed ID: 27763336 [TBL] [Abstract][Full Text] [Related]
6. Ammonia-based aeration control with optimal SRT control: improved performance and lower energy consumption. Schraa O; Rieger L; Alex J; Miletić I Water Sci Technol; 2019 Jan; 79(1):63-72. PubMed ID: 30816863 [TBL] [Abstract][Full Text] [Related]
7. Reducing aeration energy consumption in a large-scale membrane bioreactor: Process simulation and engineering application. Sun J; Liang P; Yan X; Zuo K; Xiao K; Xia J; Qiu Y; Wu Q; Wu S; Huang X; Qi M; Wen X Water Res; 2016 Apr; 93():205-213. PubMed ID: 26905799 [TBL] [Abstract][Full Text] [Related]
8. The difference between energy consumption and energy cost: Modelling energy tariff structures for water resource recovery facilities. Aymerich I; Rieger L; Sobhani R; Rosso D; Corominas L Water Res; 2015 Sep; 81():113-23. PubMed ID: 26048700 [TBL] [Abstract][Full Text] [Related]
9. Effects of aeration patterns on the flow field in wastewater aeration tanks. Gresch M; Armbruster M; Braun D; Gujer W Water Res; 2011 Jan; 45(2):810-8. PubMed ID: 20932546 [TBL] [Abstract][Full Text] [Related]
10. Dynamic alpha factors: Prediction in time and evolution along reactors. Bencsik D; Takács I; Rosso D Water Res; 2022 Jun; 216():118339. PubMed ID: 35413625 [TBL] [Abstract][Full Text] [Related]
11. Towards advanced aeration modelling: from blower to bubbles to bulk. Amaral A; Schraa O; Rieger L; Gillot S; Fayolle Y; Bellandi G; Amerlinck Y; Mortier ST; Gori R; Neves R; Nopens I Water Sci Technol; 2017 Feb; 75(3-4):507-517. PubMed ID: 28192345 [TBL] [Abstract][Full Text] [Related]
12. Linking biofilm growth to fouling and aeration performance of fine-pore diffuser in activated sludge. Garrido-Baserba M; Asvapathanagul P; McCarthy GW; Gocke TE; Olson BH; Park HD; Al-Omari A; Murthy S; Bott CB; Wett B; Smeraldi JD; Shaw AR; Rosso D Water Res; 2016 Mar; 90():317-328. PubMed ID: 26760484 [TBL] [Abstract][Full Text] [Related]
13. Two-level multivariable control system of dissolved oxygen tracking and aeration system for activated sludge processes. Piotrowski R Water Environ Res; 2015 Jan; 87(1):3-13. PubMed ID: 25630122 [TBL] [Abstract][Full Text] [Related]
14. A Critical Review of the Factors Affecting Modeling Oxygen Transfer by Fine-Pore Diffusers in Activated Sludge. Baquero-Rodríguez GA; Lara-Borrero JA; Nolasco D; Rosso D Water Environ Res; 2018 May; 90(5):431-441. PubMed ID: 29678214 [TBL] [Abstract][Full Text] [Related]
15. CFD simulation of fluid dynamic and biokinetic processes within activated sludge reactors under intermittent aeration regime. Sánchez F; Rey H; Viedma A; Nicolás-Pérez F; Kaiser AS; Martínez M Water Res; 2018 Aug; 139():47-57. PubMed ID: 29626729 [TBL] [Abstract][Full Text] [Related]
16. Energy shifting in wastewater treatment using compressed oxygen from integrated hydrogen production. Donald R; Love JG J Environ Manage; 2023 Apr; 331():117205. PubMed ID: 36638719 [TBL] [Abstract][Full Text] [Related]
17. Modelling the link amongst fine-pore diffuser fouling, oxygen transfer efficiency, and aeration energy intensity. Garrido-Baserba M; Sobhani R; Asvapathanagul P; McCarthy GW; Olson BH; Odize V; Al-Omari A; Murthy S; Nifong A; Godwin J; Bott CB; Stenstrom MK; Shaw AR; Rosso D Water Res; 2017 Mar; 111():127-139. PubMed ID: 28064087 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the efficiency of large-scale ceramic and membrane aeration systems with the dynamic off-gas method. Libra JA; Schuchardt A; Sahlmann C; Handschag J; Wiesmann U; Gnirss R Water Sci Technol; 2002; 46(4-5):317-24. PubMed ID: 12361027 [TBL] [Abstract][Full Text] [Related]
19. Reverse flexing as a physical/mechanical treatment to mitigate fouling of fine bubble diffusers. Odize VO; Novak J; De Clippeleir H; Al-Omari A; Smeraldi JD; Murthy S; Rosso D Water Sci Technol; 2017 Oct; 76(7-8):1595-1602. PubMed ID: 28991777 [TBL] [Abstract][Full Text] [Related]
20. Applying fine bubble aeration to small aeration tanks. Duchène P; Cotteux E; Capela S Water Sci Technol; 2001; 44(2-3):203-10. PubMed ID: 11547985 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]