These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 30339756)

  • 21. Laser Shock Tuning Dynamic Interlayer Coupling in Graphene-Boron Nitride Moiré Superlattices.
    Kumar P; Liu J; Motlag M; Tong L; Hu Y; Huang X; Bandopadhyay A; Pati SK; Ye L; Irudayaraj J; Cheng GJ
    Nano Lett; 2019 Jan; 19(1):283-291. PubMed ID: 30525695
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interlayer coupling and electric field tunable electronic properties and Schottky barrier in a graphene/bilayer-GaSe van der Waals heterostructure.
    Phuc HV; Hieu NN; Hoi BD; Nguyen CV
    Phys Chem Chem Phys; 2018 Jul; 20(26):17899-17908. PubMed ID: 29926024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controlled van der Waals epitaxy of monolayer MoS2 triangular domains on graphene.
    Ago H; Endo H; Solís-Fernández P; Takizawa R; Ohta Y; Fujita Y; Yamamoto K; Tsuji M
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5265-73. PubMed ID: 25695865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interlayer Excitons and Band Alignment in MoS
    Latini S; Winther KT; Olsen T; Thygesen KS
    Nano Lett; 2017 Feb; 17(2):938-945. PubMed ID: 28026961
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Charge Storage of Isolated Monolayer Molybdenum Disulfide in Epitaxially Grown MoS
    Tsai PC; Huang CW; Chang SJ; Chang SW; Lin SY
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45864-45869. PubMed ID: 34521198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Emergent second-harmonic generation in van der Waals heterostructure of bilayer MoS
    Zhang M; Han N; Zhang J; Wang J; Chen X; Zhao J; Gan X
    Sci Adv; 2023 Mar; 9(11):eadf4571. PubMed ID: 36921058
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Observing Imperfection in Atomic Interfaces for van der Waals Heterostructures.
    Rooney AP; Kozikov A; Rudenko AN; Prestat E; Hamer MJ; Withers F; Cao Y; Novoselov KS; Katsnelson MI; Gorbachev R; Haigh SJ
    Nano Lett; 2017 Sep; 17(9):5222-5228. PubMed ID: 28741958
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-sensing, tunable monolayer MoS
    Manzeli S; Dumcenco D; Migliato Marega G; Kis A
    Nat Commun; 2019 Oct; 10(1):4831. PubMed ID: 31645562
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Limits of Coherency and Strain Transfer in Flexible 2D van der Waals Heterostructures: Formation of Strain Solitons and Interlayer Debonding.
    Kumar H; Dong L; Shenoy VB
    Sci Rep; 2016 Feb; 6():21516. PubMed ID: 26867496
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Van der Waals Epitaxial Growth of Two-Dimensional Single-Crystalline GaSe Domains on Graphene.
    Li X; Basile L; Huang B; Ma C; Lee J; Vlassiouk IV; Puretzky AA; Lin MW; Yoon M; Chi M; Idrobo JC; Rouleau CM; Sumpter BG; Geohegan DB; Xiao K
    ACS Nano; 2015 Aug; 9(8):8078-88. PubMed ID: 26202730
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrically and Optically Tunable Responses in Graphene/Transition-Metal-Dichalcogenide Heterostructures.
    Zhao M; Song P; Teng J
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):44102-44108. PubMed ID: 30479118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Misfit strain-induced energy dissipation for graphene/MoS
    He JD; Jiang JW
    Nanotechnology; 2019 Jun; 30(26):265701. PubMed ID: 30865944
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tuning the Carrier Confinement in GeS/Phosphorene van der Waals Heterostructures.
    Wang C; Peng L; Qian Q; Du J; Wang S; Huang Y
    Small; 2018 Mar; 14(10):. PubMed ID: 29323456
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wafer-Scale van der Waals Heterostructures with Ultraclean Interfaces via the Aid of Viscoelastic Polymer.
    Boandoh S; Agyapong-Fordjour FO; Choi SH; Lee JS; Park JH; Ko H; Han G; Yun SJ; Park S; Kim YM; Yang W; Lee YH; Kim SM; Kim KK
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1579-1586. PubMed ID: 30525400
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonvolatile magnetoelectric coupling in two-dimensional ferromagnetic-bilayer/ferroelectric van der Waals heterostructures.
    Wang W; Sun W; Li H; Bai Y; Ren F; You C; Cheng Z
    Nanoscale; 2021 Sep; 13(33):14214-14220. PubMed ID: 34477703
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hexagonal boron nitride nanomechanical resonators with spatially visualized motion.
    Zheng XQ; Lee J; Feng PX
    Microsyst Nanoeng; 2017; 3():17038. PubMed ID: 31057874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design of MoS
    Yu X; Zhao G; Gong S; Liu C; Wu C; Lyu P; Maurin G; Zhang N
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):24777-24785. PubMed ID: 32392037
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-induced uniaxial strain in MoS2 monolayers with local van der Waals-stacked interlayer interactions.
    Zhang K; Hu S; Zhang Y; Zhang T; Zhou X; Sun Y; Li TX; Fan HJ; Shen G; Chen X; Dai N
    ACS Nano; 2015 Mar; 9(3):2704-10. PubMed ID: 25716291
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nano-"Squeegee" for the Creation of Clean 2D Material Interfaces.
    Rosenberger MR; Chuang HJ; McCreary KM; Hanbicki AT; Sivaram SV; Jonker BT
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10379-10387. PubMed ID: 29510025
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tunable Electrical and Optical Characteristics in Monolayer Graphene and Few-Layer MoS2 Heterostructure Devices.
    Rathi S; Lee I; Lim D; Wang J; Ochiai Y; Aoki N; Watanabe K; Taniguchi T; Lee GH; Yu YJ; Kim P; Kim GH
    Nano Lett; 2015 Aug; 15(8):5017-24. PubMed ID: 26091357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.