These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30339786)

  • 1. Glucagon revisited: Coordinated actions on the liver and kidney.
    Bankir L; Bouby N; Speth RC; Velho G; Crambert G
    Diabetes Res Clin Pract; 2018 Dec; 146():119-129. PubMed ID: 30339786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein- and diabetes-induced glomerular hyperfiltration: role of glucagon, vasopressin, and urea.
    Bankir L; Roussel R; Bouby N
    Am J Physiol Renal Physiol; 2015 Jul; 309(1):F2-23. PubMed ID: 25925260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucagon actions on the kidney revisited: possible role in potassium homeostasis.
    Bankir L; Bouby N; Blondeau B; Crambert G
    Am J Physiol Renal Physiol; 2016 Aug; 311(2):F469-86. PubMed ID: 27194722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclic AMP is a hepatorenal link influencing natriuresis and contributing to glucagon-induced hyperfiltration in rats.
    Ahloulay M; Déchaux M; Hassler C; Bouby N; Bankir L
    J Clin Invest; 1996 Nov; 98(10):2251-8. PubMed ID: 8941641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of urea synthesis by diet protein and carbohydrate in normal man and in patients with cirrhosis. Relationship to glucagon and insulin.
    Hamberg O
    Dan Med Bull; 1997 Jun; 44(3):225-41. PubMed ID: 9233544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of glucagon on GFR and on urea and electrolyte excretion: direct and indirect effects.
    Ahloulay M; Déchaux M; Laborde K; Bankir L
    Am J Physiol; 1995 Aug; 269(2 Pt 2):F225-35. PubMed ID: 7653596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of glucagon on protein metabolism in normal man.
    Wolfe BM; Culebras JM; Aoki TT; O'Connor NE; Finley RJ; Kaczowka A; Moore FD
    Surgery; 1979 Aug; 86(2):248-57. PubMed ID: 380036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein turnover, ureagenesis and gluconeogenesis.
    Schutz Y
    Int J Vitam Nutr Res; 2011 Mar; 81(2-3):101-7. PubMed ID: 22139560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucagon and cyclic AMP: time to turn the page?
    Rodgers RL
    Curr Diabetes Rev; 2012 Sep; 8(5):362-81. PubMed ID: 22587514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasma cAMP: a hepatorenal link influencing proximal reabsorption and renal hemodynamics?
    Bankir L; Martin H; Déchaux M; Ahloulay M
    Kidney Int Suppl; 1997 Jun; 59():S50-6. PubMed ID: 9185105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inosine released after hypoxia activates hepatic glucose liberation through A3 adenosine receptors.
    Guinzberg R; Cortés D; Díaz-Cruz A; Riveros-Rosas H; Villalobos-Molina R; Piña E
    Am J Physiol Endocrinol Metab; 2006 May; 290(5):E940-51. PubMed ID: 16352677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the endocrine pancreas in control of fuel metabolism by the liver during exercise.
    Wasserman DH; O'Doherty RM; Zinker BA
    Int J Obes Relat Metab Disord; 1995 Oct; 19 Suppl 4():S22-30. PubMed ID: 8581091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic factors in the renal response to amino acid infusion.
    Claris-Appiani A; Ardissino G; Tirelli AS; Daccò V; Corbetta C; Guidi L; Moretto E; Assael BM; Sereni F
    Am J Nephrol; 1998; 18(5):359-66. PubMed ID: 9730557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Hormonal control of hepatic metabolism in ruminants].
    Grizard J; Balage M; Manin M
    Reprod Nutr Dev (1980); 1986; 26(1B):245-57. PubMed ID: 3010407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hepatic fuel metabolism during muscular work: role and regulation.
    Wasserman DH; Cherrington AD
    Am J Physiol; 1991 Jun; 260(6 Pt 1):E811-24. PubMed ID: 2058658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Identification of Novel Protein-Protein Interactions in Liver that Affect Glucagon Receptor Activity.
    Han J; Zhang M; Froese S; Dai FF; Robitaille M; Bhattacharjee A; Huang X; Jia W; Angers S; Wheeler MB; Wei L
    PLoS One; 2015; 10(6):e0129226. PubMed ID: 26075596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular cAMP inhibits proximal reabsorption: are plasma membrane cAMP receptors involved?
    Bankir L; Ahloulay M; Devreotes PN; Parent CA
    Am J Physiol Renal Physiol; 2002 Mar; 282(3):F376-92. PubMed ID: 11832418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concentration of cyclic AMP in rat liver as a function of the insulin/glucagon ratio in blood under standardized physiological conditions.
    Seitz HJ; Müller MJ; Nordmeyer P; Krone W; Tarnowski W
    Endocrinology; 1976 Nov; 99(5):1313-8. PubMed ID: 186253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of hepatic glucose output by glucagon and insulin in the intact dog.
    Cherrington AD; Chiasson JL; Liljenquist JE; Lacy WW; Park CR
    Biochem Soc Symp; 1978; (43):31-45. PubMed ID: 373768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of glucagon on net splanchnic cyclic AMP production in normal and diabetic men.
    Liljenquist JE; Bomboy JD; Lewis SB; Sinclair-Smith BC; Felts PW; Lacy WW; Crofford OB; Liddle GW
    J Clin Invest; 1974 Jan; 53(1):198-204. PubMed ID: 4357612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.