These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 30340024)

  • 1. RNA Polymerase II Phosphorylated on CTD Serine 5 Interacts with the Spliceosome during Co-transcriptional Splicing.
    Nojima T; Rebelo K; Gomes T; Grosso AR; Proudfoot NJ; Carmo-Fonseca M
    Mol Cell; 2018 Oct; 72(2):369-379.e4. PubMed ID: 30340024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mammalian NET-Seq Reveals Genome-wide Nascent Transcription Coupled to RNA Processing.
    Nojima T; Gomes T; Grosso ARF; Kimura H; Dye MJ; Dhir S; Carmo-Fonseca M; Proudfoot NJ
    Cell; 2015 Apr; 161(3):526-540. PubMed ID: 25910207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Mammalian Native Elongating Transcript sequencing (mNET-seq) high-throughput data.
    Prudêncio P; Rebelo K; Grosso AR; Martinho RG; Carmo-Fonseca M
    Methods; 2020 Jun; 178():89-95. PubMed ID: 31493517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-transcriptional splicing and the CTD code.
    Custódio N; Carmo-Fonseca M
    Crit Rev Biochem Mol Biol; 2016 Sep; 51(5):395-411. PubMed ID: 27622638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mammalian NET-seq analysis defines nascent RNA profiles and associated RNA processing genome-wide.
    Nojima T; Gomes T; Carmo-Fonseca M; Proudfoot NJ
    Nat Protoc; 2016 Mar; 11(3):413-28. PubMed ID: 26844429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Are Short Exons Flanked by Long Introns Defined and Committed to Splicing?
    Hollander D; Naftelberg S; Lev-Maor G; Kornblihtt AR; Ast G
    Trends Genet; 2016 Oct; 32(10):596-606. PubMed ID: 27507607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Participation of the C-terminal domain of RNA polymerase II in exon definition during pre-mRNA splicing.
    Zeng C; Berget SM
    Mol Cell Biol; 2000 Nov; 20(21):8290-301. PubMed ID: 11027297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo.
    Misteli T; Spector DL
    Mol Cell; 1999 Jun; 3(6):697-705. PubMed ID: 10394358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-transcriptional splicing regulates 3' end cleavage during mammalian erythropoiesis.
    Reimer KA; Mimoso CA; Adelman K; Neugebauer KM
    Mol Cell; 2021 Mar; 81(5):998-1012.e7. PubMed ID: 33440169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proximity of the U12 snRNA with both the 5' splice site and the branch point during early stages of spliceosome assembly.
    Frilander MJ; Meng X
    Mol Cell Biol; 2005 Jun; 25(12):4813-25. PubMed ID: 15923601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pre-mRNA splicing and its cotranscriptional connections.
    Shenasa H; Bentley DL
    Trends Genet; 2023 Sep; 39(9):672-685. PubMed ID: 37236814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The in vivo kinetics of RNA polymerase II elongation during co-transcriptional splicing.
    Brody Y; Neufeld N; Bieberstein N; Causse SZ; Böhnlein EM; Neugebauer KM; Darzacq X; Shav-Tal Y
    PLoS Biol; 2011 Jan; 9(1):e1000573. PubMed ID: 21264352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable tri-snRNP integration is accompanied by a major structural rearrangement of the spliceosome that is dependent on Prp8 interaction with the 5' splice site.
    Boesler C; Rigo N; Agafonov DE; Kastner B; Urlaub H; Will CL; Lührmann R
    RNA; 2015 Nov; 21(11):1993-2005. PubMed ID: 26385511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A serine/arginine-rich nuclear matrix cyclophilin interacts with the C-terminal domain of RNA polymerase II.
    Bourquin JP; Stagljar I; Meier P; Moosmann P; Silke J; Baechi T; Georgiev O; Schaffner W
    Nucleic Acids Res; 1997 Jun; 25(11):2055-61. PubMed ID: 9153302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive RNA Polymerase II Interactomes Reveal Distinct and Varied Roles for Each Phospho-CTD Residue.
    Harlen KM; Trotta KL; Smith EE; Mosaheb MM; Fuchs SM; Churchman LS
    Cell Rep; 2016 Jun; 15(10):2147-2158. PubMed ID: 27239037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of pre-mRNA.
    Kim E; Du L; Bregman DB; Warren SL
    J Cell Biol; 1997 Jan; 136(1):19-28. PubMed ID: 9008700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rates of in situ transcription and splicing in large human genes.
    Singh J; Padgett RA
    Nat Struct Mol Biol; 2009 Nov; 16(11):1128-33. PubMed ID: 19820712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RS domain-splicing signal interactions in splicing of U12-type and U2-type introns.
    Shen H; Green MR
    Nat Struct Mol Biol; 2007 Jul; 14(7):597-603. PubMed ID: 17603499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new link between transcriptional initiation and pre-mRNA splicing: The RNA binding histone variant H2A.B.
    Soboleva TA; Parker BJ; Nekrasov M; Hart-Smith G; Tay YJ; Tng WQ; Wilkins M; Ryan D; Tremethick DJ
    PLoS Genet; 2017 Feb; 13(2):e1006633. PubMed ID: 28234895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model in vitro system for co-transcriptional splicing.
    Yu Y; Das R; Folco EG; Reed R
    Nucleic Acids Res; 2010 Nov; 38(21):7570-8. PubMed ID: 20631007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.