BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30340028)

  • 1. Interaction between 1,2-benzisothiazol-3(2H)-one and microalgae: Growth inhibition and detoxification mechanism.
    Wang XX; Zhang TY; Dao GH; Hu HY
    Aquat Toxicol; 2018 Dec; 205():66-75. PubMed ID: 30340028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The light-dependent lethal effects of 1,2-benzisothiazol-3(2H)-one and its biodegradation by freshwater microalgae.
    Wang XX; Zhang QQ; Wu YH; Dao GH; Zhang TY; Tao Y; Hu HY
    Sci Total Environ; 2019 Jul; 672():563-571. PubMed ID: 30970286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tolerance and resistance characteristics of microalgae Scenedesmus sp. LX1 to methylisothiazolinone.
    Wang XX; Zhang TY; Dao GH; Hu HY
    Environ Pollut; 2018 Oct; 241():200-211. PubMed ID: 29807280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecotoxicological effects of perfluorooctanoic acid on freshwater microalgae Chlamydomonas reinhardtii and Scenedesmus obliquus.
    Hu C; Luo Q; Huang Q
    Environ Toxicol Chem; 2014 May; 33(5):1129-34. PubMed ID: 24464740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects of P25 TiO2 nanoparticles on freshwater green microalgae: Chlorella and Scenedesmus species.
    Roy R; Parashar A; Bhuvaneshwari M; Chandrasekaran N; Mukherjee A
    Aquat Toxicol; 2016 Jul; 176():161-71. PubMed ID: 27137676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical- and species-specific toxicity of nonylphenol and octylphenol to microalgae Chlorella pyrenoidosa and Scenedesmus obliquus.
    Yang W; Gao X; Wu Y; Wan L; Lu C; Huang J; Chen H; Yang Y; Ding H; Zhang W
    Environ Toxicol Pharmacol; 2021 Jan; 81():103517. PubMed ID: 33080356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enantioselective mechanism of toxic effects of triticonazole against Chlorella pyrenoidosa.
    Liu R; Deng Y; Zhang W; Zhang L; Wang Z; Li B; Diao J; Zhou Z
    Ecotoxicol Environ Saf; 2019 Dec; 185():109691. PubMed ID: 31563746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity and Antioxidant Response of Chlorella sp. MM3 to Used Engine Oil and Its Water Accommodated Fraction.
    Ramadass K; Megharaj M; Venkateswarlu K; Naidu R
    Bull Environ Contam Toxicol; 2016 Jul; 97(1):71-7. PubMed ID: 27174464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detoxification mechanism of organophosphorus pesticide via carboxylestrase pathway that triggers de novo TAG biosynthesis in oleaginous microalgae.
    Nanda M; Kumar V; Fatima N; Pruthi V; Verma M; Chauhan PK; Vlaskin MS; Grigorenko AV
    Aquat Toxicol; 2019 Apr; 209():49-55. PubMed ID: 30711855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity of diesel water accommodated fraction toward microalgae, Pseudokirchneriella subcapitata and Chlorella sp. MM3.
    Ramadass K; Megharaj M; Venkateswarlu K; Naidu R
    Ecotoxicol Environ Saf; 2017 Aug; 142():538-543. PubMed ID: 28478380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate.
    Xiong JQ; Kurade MB; Abou-Shanab RA; Ji MK; Choi J; Kim JO; Jeon BH
    Bioresour Technol; 2016 Apr; 205():183-90. PubMed ID: 26826958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress potential of the herbicides bifenox and metribuzin in the microalgae Chlamydomonas reinhardtii.
    Almeida AC; Gomes T; Langford K; Thomas KV; Tollefsen KE
    Aquat Toxicol; 2019 May; 210():117-128. PubMed ID: 30849631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of two green microalgae to copper stress: Growth, oxidative and antioxidants analyses.
    Hamed SM; Selim S; Klöck G; AbdElgawad H
    Ecotoxicol Environ Saf; 2017 Oct; 144():19-25. PubMed ID: 28599127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicological effects of chlorpyrifos on growth, enzyme activity and chlorophyll a synthesis of freshwater microalgae.
    Chen S; Chen M; Wang Z; Qiu W; Wang J; Shen Y; Wang Y; Ge S
    Environ Toxicol Pharmacol; 2016 Jul; 45():179-86. PubMed ID: 27314761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of long-term toxicity of CuO NPs to microalgae.
    Che X; Ding R; Li Y; Zhang Z; Gao H; Wang W
    Nanotoxicology; 2018 Oct; 12(8):923-939. PubMed ID: 30182775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytotoxicity, Bioaccumulation, and Degradation of Nonylphenol in Different Microalgal Species without Bacterial Influences.
    He N; Liu Z; Sun X; Wang S; Liu W; Sun D; Duan S
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32079213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-dependent changes in antioxidative enzyme expression and photosynthetic activity of Chlamydomonas reinhardtii cells under acute exposure to cadmium and anthracene.
    Aksmann A; Pokora W; Baścik-Remisiewicz A; Dettlaff-Pokora A; Wielgomas B; Dziadziuszko M; Tukaj Z
    Ecotoxicol Environ Saf; 2014 Dec; 110():31-40. PubMed ID: 25193882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The combined toxicity influence of microplastics and nonylphenol on microalgae Chlorella pyrenoidosa.
    Yang W; Gao X; Wu Y; Wan L; Tan L; Yuan S; Ding H; Zhang W
    Ecotoxicol Environ Saf; 2020 Jun; 195():110484. PubMed ID: 32200150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Triclosan-induced transcriptional and biochemical alterations in the freshwater green algae Chlamydomonas reinhardtii.
    Pan CG; Peng FJ; Shi WJ; Hu LX; Wei XD; Ying GG
    Ecotoxicol Environ Saf; 2018 Feb; 148():393-401. PubMed ID: 29100157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of lead on growth, photosynthetic characteristics and production of reactive oxygen species of two freshwater green algae.
    Dao LH; Beardall J
    Chemosphere; 2016 Mar; 147():420-9. PubMed ID: 26774308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.