These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 30340083)

  • 1. Influence of pristine and hydrophobic ZnO nanoparticles on cytotoxicity and endoplasmic reticulum (ER) stress-autophagy-apoptosis gene expression in A549-macrophage co-culture.
    Liu T; Liang H; Liu L; Gong Y; Ding Y; Liao G; Cao Y
    Ecotoxicol Environ Saf; 2019 Jan; 167():188-195. PubMed ID: 30340083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of bovine serum albumin pre-incubation on toxicity and ER stress-apoptosis gene expression in THP-1 macrophages exposed to ZnO nanoparticles.
    Liang H; He T; Long J; Liu L; Liao G; Ding Y; Cao Y
    Toxicol Mech Methods; 2018 Oct; 28(8):587-598. PubMed ID: 29783874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3-Hydroxyflavone enhances the toxicity of ZnO nanoparticles in vitro.
    Luo Y; Wu C; Liu L; Gong Y; Peng S; Xie Y; Cao Y
    J Appl Toxicol; 2018 Sep; 38(9):1206-1214. PubMed ID: 29691881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The endoplasmic reticulum stress inducer thapsigargin enhances the toxicity of ZnO nanoparticles to macrophages and macrophage-endothelial co-culture.
    Chen G; Shen Y; Li X; Jiang Q; Cheng S; Gu Y; Liu L; Cao Y
    Environ Toxicol Pharmacol; 2017 Mar; 50():103-110. PubMed ID: 28171821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytotoxicity, cytokine release and ER stress-autophagy gene expression in endothelial cells and alveolar-endothelial co-culture exposed to pristine and carboxylated multi-walled carbon nanotubes.
    Chang S; Zhao X; Li S; Liao T; Long J; Yu Z; Cao Y
    Ecotoxicol Environ Saf; 2018 Oct; 161():569-577. PubMed ID: 29929133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Palmitate enhanced the cytotoxicity of ZnO nanomaterials possibly by promoting endoplasmic reticulum stress.
    Chen J; Yang T; Long J; Ding Y; Li J; Li X; Cao Y
    J Appl Toxicol; 2019 May; 39(5):798-806. PubMed ID: 30620997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicity of ZnO nanoparticles (NPs) to THP-1 macrophages: interactions with saturated or unsaturated free fatty acids.
    Jiang M; Wu B; Sun Y; Ding Y; Xie Y; Liu L; Cao Y
    Toxicol Mech Methods; 2019 May; 29(4):291-299. PubMed ID: 30461332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of endoplasmic reticulum stress inducer thapsigargin on the toxicity of ZnO or TiO
    Gu Y; Cheng S; Chen G; Shen Y; Li X; Jiang Q; Li J; Cao Y
    Toxicol Mech Methods; 2017 Mar; 27(3):191-200. PubMed ID: 27997269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation.
    Chen R; Huo L; Shi X; Bai R; Zhang Z; Zhao Y; Chang Y; Chen C
    ACS Nano; 2014 Mar; 8(3):2562-74. PubMed ID: 24490819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of cytotoxicity of Ag/ZnO and Ag@ZnO nanocomplexes to human umbilical vein endothelial cells in vitro.
    Yan D; Xue Z; Li S; Zhong C
    J Appl Toxicol; 2021 May; 41(5):811-819. PubMed ID: 33314238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxicity of ZnO nanoparticles (NPs) to A549 cells and A549 epithelium in vitro: Interactions with dipalmitoyl phosphatidylcholine (DPPC).
    He T; Long J; Li J; Liu L; Cao Y
    Environ Toxicol Pharmacol; 2017 Dec; 56():233-240. PubMed ID: 29028602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size dependent effect of ZnO nanoparticles on endoplasmic reticulum stress signaling pathway in murine liver.
    Kuang H; Yang P; Yang L; Aguilar ZP; Xu H
    J Hazard Mater; 2016 Nov; 317():119-126. PubMed ID: 27262279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity of ZnO nanoparticles (NPs) with or without hydrophobic surface coating to THP-1 macrophages: interactions with BSA or oleate-BSA.
    Li X; Fang X; Ding Y; Li J; Cao Y
    Toxicol Mech Methods; 2018 Sep; 28(7):520-528. PubMed ID: 29697006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells.
    Bai DP; Zhang XF; Zhang GL; Huang YF; Gurunathan S
    Int J Nanomedicine; 2017; 12():6521-6535. PubMed ID: 28919752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and
    Ng CT; Yong LQ; Hande MP; Ong CN; Yu LE; Bay BH; Baeg GH
    Int J Nanomedicine; 2017; 12():1621-1637. PubMed ID: 28280330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defect-induced electronic states amplify the cellular toxicity of ZnO nanoparticles.
    Persaud I; Raghavendra AJ; Paruthi A; Alsaleh NB; Minarchick VC; Roede JR; Podila R; Brown JM
    Nanotoxicology; 2020 Mar; 14(2):145-161. PubMed ID: 31553248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Irradiation-Enhanced Cytotoxicity of Zinc Oxide Nanoparticles.
    Yang Q; Ma Y
    Int J Toxicol; 2014 May; 33(3):187-203. PubMed ID: 24700570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyanidin chloride modestly protects Caco-2 cells from ZnO nanoparticle exposure probably through the induction of autophagy.
    Jiang L; Li Z; Xie Y; Liu L; Cao Y
    Food Chem Toxicol; 2019 May; 127():251-259. PubMed ID: 30922967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute exposure to ZnO nanoparticles induces autophagic immune cell death.
    Johnson BM; Fraietta JA; Gracias DT; Hope JL; Stairiker CJ; Patel PR; Mueller YM; McHugh MD; Jablonowski LJ; Wheatley MA; Katsikis PD
    Nanotoxicology; 2015; 9(6):737-48. PubMed ID: 25378273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ZnO Nanoparticles Induced Male Reproductive Toxicity Based on the Effects on the Endoplasmic Reticulum Stress Signaling Pathway.
    Tang Y; Chen B; Hong W; Chen L; Yao L; Zhao Y; Aguilar ZP; Xu H
    Int J Nanomedicine; 2019; 14():9563-9576. PubMed ID: 31824151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.