BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 30340360)

  • 1. Melt Viscoelastic Assessment of Poly(Lactic Acid) Composting: Influence of UV Ageing.
    Verney V; Ramoné A; Delor-Jestin F; Commereuc S; Koutny M; Perchet G; Troquet J
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30340360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process.
    Stloukal P; Pekařová S; Kalendova A; Mattausch H; Laske S; Holzer C; Chitu L; Bodner S; Maier G; Slouf M; Koutny M
    Waste Manag; 2015 Aug; 42():31-40. PubMed ID: 25981155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradable kinetics and behavior of bio-based polyblends under simulated aerobic composting conditions.
    Kalita NK; Bhasney SM; Kalamdhad A; Katiyar V
    J Environ Manage; 2020 May; 261():110211. PubMed ID: 32148281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized kinetics for thermal degradation and melt rheology for poly (lactic acid)/poly (butylene succinate)/functionalized chitosan based reactive nanobiocomposite.
    Monika ; Mulchandani N; Katiyar V
    Int J Biol Macromol; 2019 Dec; 141():831-842. PubMed ID: 31513852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. End-of-life evaluation and biodegradation of Poly(lactic acid) (PLA)/Polycaprolactone (PCL)/Microcrystalline cellulose (MCC) polyblends under composting conditions.
    Kalita NK; Bhasney SM; Mudenur C; Kalamdhad A; Katiyar V
    Chemosphere; 2020 May; 247():125875. PubMed ID: 32069712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laboratory composting of extruded poly(lactic acid) sheets.
    Ghorpade VM; Gennadios A; Hanna MA
    Bioresour Technol; 2001 Jan; 76(1):57-61. PubMed ID: 11315811
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling of poly (lactic acid)/silk based bionanocomposites films and its influence on thermal stability, crystallization kinetics, solution and melt rheology.
    Tesfaye M; Patwa R; Gupta A; Kashyap MJ; Katiyar V
    Int J Biol Macromol; 2017 Aug; 101():580-594. PubMed ID: 28322953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes of physical properties of PLA-based blends during early stage of biodegradation in compost.
    Sedničková M; Pekařová S; Kucharczyk P; Bočkaj J; Janigová I; Kleinová A; Jochec-Mošková D; Omaníková L; Perďochová D; Koutný M; Sedlařík V; Alexy P; Chodák I
    Int J Biol Macromol; 2018 Jul; 113():434-442. PubMed ID: 29454946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing biodegradation of PLA and PLA-g-AA/starch films using a phosphate-solubilizing bacillus species.
    Wu CS
    Macromol Biosci; 2008 Jun; 8(6):560-7. PubMed ID: 18322910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable thermogelling poly(ester urethane)s consisting of poly(lactic acid)--thermodynamics of micellization and hydrolytic degradation.
    Loh XJ; Tan YX; Li Z; Teo LS; Goh SH; Li J
    Biomaterials; 2008 May; 29(14):2164-72. PubMed ID: 18276002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerating Biodegradation: Enhancing Poly(lactic acid) Breakdown at Mesophilic Environmental Conditions with Biostimulants.
    Mayekar PC; Auras R
    Macromol Rapid Commun; 2024 Apr; 45(7):e2300641. PubMed ID: 38206571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eco-friendly poly(lactic acid) microbeads for cosmetics via melt electrospraying.
    Nam HC; Park WH
    Int J Biol Macromol; 2020 Aug; 157():734-742. PubMed ID: 31805334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Chain Extending Cross-Linkers on the Disintegration Behavior of Composted PBAT/PLA Blown Films.
    Azevedo JVC; Hausnerova B; Möginger B; Sopik T
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speeding it up: dual effects of biostimulants and iron on the biodegradation of poly(lactic acid) at mesophilic conditions.
    Mayekar PC; Auras R
    Environ Sci Process Impacts; 2024 Mar; 26(3):530-539. PubMed ID: 38345085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forensic engineering of advanced polymeric materials. Part III - Biodegradation of thermoformed rigid PLA packaging under industrial composting conditions.
    Musioł M; Sikorska W; Adamus G; Janeczek H; Richert J; Malinowski R; Jiang G; Kowalczuk M
    Waste Manag; 2016 Jun; 52():69-76. PubMed ID: 27103398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study on the in vitro degradation of poly(lactic acid).
    Migliaresi C; Fambri L; Cohn D
    J Biomater Sci Polym Ed; 1994; 5(6):591-606. PubMed ID: 8086385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Molecular Weight on the Marine Biodegradability of Poly(l-lactic acid).
    Seok JH; Iwata T
    Biomacromolecules; 2024 Jul; 25(7):4420-4427. PubMed ID: 38885360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoplastic starch/polyester films: effects of extrusion process and poly (lactic acid) addition.
    Shirai MA; Olivato JB; Garcia PS; Müller CM; Grossmann MV; Yamashita F
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4112-7. PubMed ID: 23910321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UV-irradiated biodegradability of ethylene--propylene copolymers, LDPE, and I-PP in composting and culture environments.
    Pandey JK; Singh RP
    Biomacromolecules; 2001; 2(3):880-5. PubMed ID: 11710045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An insight into different phenomena involved in continuous extrusion foaming of biodegradable poly(lactic acid)/expanded graphite nanocomposites.
    Khademi SMH; Hemmati F; Aroon MA
    Int J Biol Macromol; 2020 Aug; 157():470-483. PubMed ID: 32353504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.