These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 30340360)

  • 21. Laboratory composting of extruded starch acetate and poly lactic acid blended foams.
    Ganjyal GM; Weber R; Hanna MA
    Bioresour Technol; 2007 Nov; 98(16):3176-9. PubMed ID: 17222552
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Formation of bioerodible polymeric microspheres and microparticles by rapid expansion of supercritical solutions.
    Tom JW; Debenedetti PG
    Biotechnol Prog; 1991; 7(5):403-11. PubMed ID: 1369363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic.
    Al Hosni AS; Pittman JK; Robson GD
    Waste Manag; 2019 Sep; 97():105-114. PubMed ID: 31447017
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biodegradability evaluation of polymers by ISO 14855-2.
    Funabashi M; Ninomiya F; Kunioka M
    Int J Mol Sci; 2009 Aug; 10(8):3635-3654. PubMed ID: 20111676
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polymer chain scission, oligomer production and diffusion: a two-scale model for degradation of bioresorbable polyesters.
    Han X; Pan J
    Acta Biomater; 2011 Feb; 7(2):538-47. PubMed ID: 20832507
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pressure-Sensitive Tissue Adhesion and Biodegradation of Viscoelastic Polymer Blends.
    Daristotle JL; Zaki ST; Lau LW; Ayyub OB; Djouini M; Srinivasan P; Erdi M; Sandler AD; Kofinas P
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16050-16057. PubMed ID: 32191429
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intrinsic viscoelasticity in thin high-molecular-weight polymer films.
    Sheng X; Wintzenrieth F; Thomas KR; Steiner U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062604. PubMed ID: 25019807
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative study of the degradation of polylactide and polytartrate implants in vitro.
    Schlosser T; Suess WG
    Pharmazie; 2005 Jul; 60(7):514-7. PubMed ID: 16076077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of turning aeration and the initial carbon/nitrogen ratio on the biodegradation of polylactic acid under controlled conditions.
    Baldera-Moreno Y; Hernández C; Vargas A; Rojas-Palma A; Morales-Vera R; Andler R
    Int J Biol Macromol; 2024 May; 268(Pt 1):131689. PubMed ID: 38642680
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of diameter of poly(lactic acid) fiber on the physical properties of poly(ɛ-caprolactone).
    Ju D; Han L; Guo Z; Bian J; Li F; Chen S; Dong L
    Int J Biol Macromol; 2015 May; 76():49-57. PubMed ID: 25709010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comprehensive exploration of natural degradation of poly(lactic acid) blends in various degradation media: A review.
    Rosli NA; Karamanlioglu M; Kargarzadeh H; Ahmad I
    Int J Biol Macromol; 2021 Sep; 187():732-741. PubMed ID: 34358596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Autocatalytic equation describing the change in molecular weight during hydrolytic degradation of aliphatic polyesters.
    Antheunis H; van der Meer JC; de Geus M; Heise A; Koning CE
    Biomacromolecules; 2010 Apr; 11(4):1118-24. PubMed ID: 20187614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compostability assessment of nano-reinforced poly(lactic acid) films.
    Balaguer MP; Aliaga C; Fito C; Hortal M
    Waste Manag; 2016 Feb; 48():143-155. PubMed ID: 26589869
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A reaction-diffusion framework for hydrolytic degradation of amorphous polymers based on a discrete chain scission model.
    Pan Z; Brassart L
    Acta Biomater; 2023 Sep; 167():361-373. PubMed ID: 37343906
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Research progresses on degradation mechanism in vivo and medical applications of polylactic acid].
    Liu JW; Zhao Q; Wan CX
    Space Med Med Eng (Beijing); 2001 Aug; 14(4):308-12. PubMed ID: 11681349
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of simulated mechanical recycling processes on the structure and properties of poly(lactic acid).
    Beltrán FR; Lorenzo V; Acosta J; de la Orden MU; Martínez Urreaga J
    J Environ Manage; 2018 Jun; 216():25-31. PubMed ID: 28506670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradation of lactic acid based polymers under controlled composting conditions and evaluation of the ecotoxicological impact.
    Tuominen J; Kylmä J; Kapanen A; Venelampi O; Itävaara M; Seppälä J
    Biomacromolecules; 2002; 3(3):445-55. PubMed ID: 12005513
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Poly(L-lactide): a long-term degradation study in vivo. Part III. Analytical characterization.
    Pistner H; Bendix DR; Mühling J; Reuther JF
    Biomaterials; 1993; 14(4):291-8. PubMed ID: 8476999
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Poly(lactic acid)-Mass production, processing, industrial applications, and end of life.
    Castro-Aguirre E; Iñiguez-Franco F; Samsudin H; Fang X; Auras R
    Adv Drug Deliv Rev; 2016 Dec; 107():333-366. PubMed ID: 27046295
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cell morphology of extrusion foamed poly(lactic acid) using endothermic chemical foaming agent.
    Matuana LM; Faruk O; Diaz CA
    Bioresour Technol; 2009 Dec; 100(23):5947-54. PubMed ID: 19615893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.