These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 30340410)
1. Comparative Proteomic and Physiological Analyses of Two Divergent Maize Inbred Lines Provide More Insights into Drought-Stress Tolerance Mechanisms. Zenda T; Liu S; Wang X; Jin H; Liu G; Duan H Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30340410 [TBL] [Abstract][Full Text] [Related]
2. Comparative Proteomics and Physiological Analyses Reveal Important Maize Filling-Kernel Drought-Responsive Genes and Metabolic Pathways. Wang X; Zenda T; Liu S; Liu G; Jin H; Dai L; Dong A; Yang Y; Duan H Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31370198 [TBL] [Abstract][Full Text] [Related]
3. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines. Zenda T; Liu S; Wang X; Liu G; Jin H; Dong A; Yang Y; Duan H Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871211 [TBL] [Abstract][Full Text] [Related]
4. Comparative Proteomics of Salt-Tolerant and Salt-Sensitive Maize Inbred Lines to Reveal the Molecular Mechanism of Salt Tolerance. Chen F; Fang P; Peng Y; Zeng W; Zhao X; Ding Y; Zhuang Z; Gao Q; Ren B Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31554168 [TBL] [Abstract][Full Text] [Related]
5. iTRAQ-Based Proteomic Analysis Reveals Several Strategies to Cope with Drought Stress in Maize Seedlings. Jiang Z; Jin F; Shan X; Li Y Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31779286 [TBL] [Abstract][Full Text] [Related]
6. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize. Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576 [TBL] [Abstract][Full Text] [Related]
7. Comparative Proteomics Analysis of the Seedling Root Response of Drought-sensitive and Drought-tolerant Maize Varieties to Drought Stress. Zeng W; Peng Y; Zhao X; Wu B; Chen F; Ren B; Zhuang Z; Gao Q; Ding Y Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31181633 [TBL] [Abstract][Full Text] [Related]
8. Comparative Proteomic and Morpho-Physiological Analyses of Maize Wild-Type Vp16 and Mutant vp16 Germinating Seed Responses to PEG-Induced Drought Stress. Liu S; Zenda T; Dong A; Yang Y; Liu X; Wang Y; Li J; Tao Y; Duan H Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31717328 [TBL] [Abstract][Full Text] [Related]
9. Tandem mass tag (TMT)-based quantitative proteomics analysis reveals the different responses of contrasting alfalfa varieties to drought stress. Quan W; Liu X BMC Genomics; 2024 Aug; 25(1):806. PubMed ID: 39192174 [TBL] [Abstract][Full Text] [Related]
10. iTRAQ-based quantitative proteomic analysis provides insight into the drought-stress response in maize seedlings. Ren W; Shi Z; Zhou M; Zhao B; Li H; Wang J; Liu Y; Zhao J Sci Rep; 2022 Jun; 12(1):9520. PubMed ID: 35681021 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome Analysis of Tolerant and Susceptible Maize Genotypes Reveals Novel Insights about the Molecular Mechanisms Underlying Drought Responses in Leaves. Waititu JK; Zhang X; Chen T; Zhang C; Zhao Y; Wang H Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34209553 [TBL] [Abstract][Full Text] [Related]
12. Physiological and proteomic analyses revealed the response mechanisms of two different drought-resistant maize varieties. Li H; Yang M; Zhao C; Wang Y; Zhang R BMC Plant Biol; 2021 Nov; 21(1):513. PubMed ID: 34736392 [TBL] [Abstract][Full Text] [Related]
13. RNA-Seq Analysis Reveals MAPKKK Family Members Related to Drought Tolerance in Maize. Liu Y; Zhou M; Gao Z; Ren W; Yang F; He H; Zhao J PLoS One; 2015; 10(11):e0143128. PubMed ID: 26599013 [TBL] [Abstract][Full Text] [Related]
14. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages. Liu S; Zenda T; Li J; Wang Y; Liu X; Duan H PLoS One; 2020; 15(10):e0240468. PubMed ID: 33057352 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome analysis of maize inbred lines differing in drought tolerance provides novel insights into the molecular mechanisms of drought responses in roots. Zheng H; Yang Z; Wang W; Guo S; Li Z; Liu K; Sui N Plant Physiol Biochem; 2020 Apr; 149():11-26. PubMed ID: 32035249 [TBL] [Abstract][Full Text] [Related]
16. iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways responding to chilling stress in maize seedlings. Wang X; Shan X; Wu Y; Su S; Li S; Liu H; Han J; Xue C; Yuan Y J Proteomics; 2016 Sep; 146():14-24. PubMed ID: 27321579 [TBL] [Abstract][Full Text] [Related]
17. A large-scale circular RNA profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis. Zhang P; Fan Y; Sun X; Chen L; Terzaghi W; Bucher E; Li L; Dai M Plant J; 2019 May; 98(4):697-713. PubMed ID: 30715761 [TBL] [Abstract][Full Text] [Related]
18. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings. Zhang X; Lei L; Lai J; Zhao H; Song W BMC Plant Biol; 2018 Apr; 18(1):68. PubMed ID: 29685101 [TBL] [Abstract][Full Text] [Related]
19. Comparative proteomic analysis revealing the complex network associated with waterlogging stress in maize (Zea mays L.) seedling root cells. Yu F; Han X; Geng C; Zhao Y; Zhang Z; Qiu F Proteomics; 2015 Jan; 15(1):135-47. PubMed ID: 25316036 [TBL] [Abstract][Full Text] [Related]
20. Physiological and proteomic analysis of maize seedling response to water deficiency stress. Xin L; Zheng H; Yang Z; Guo J; Liu T; Sun L; Xiao Y; Yang J; Yang Q; Guo L J Plant Physiol; 2018 Sep; 228():29-38. PubMed ID: 29852332 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]