BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 30340410)

  • 1. Comparative Proteomic and Physiological Analyses of Two Divergent Maize Inbred Lines Provide More Insights into Drought-Stress Tolerance Mechanisms.
    Zenda T; Liu S; Wang X; Jin H; Liu G; Duan H
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30340410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Proteomics and Physiological Analyses Reveal Important Maize Filling-Kernel Drought-Responsive Genes and Metabolic Pathways.
    Wang X; Zenda T; Liu S; Liu G; Jin H; Dai L; Dong A; Yang Y; Duan H
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31370198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines.
    Zenda T; Liu S; Wang X; Liu G; Jin H; Dong A; Yang Y; Duan H
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Proteomics of Salt-Tolerant and Salt-Sensitive Maize Inbred Lines to Reveal the Molecular Mechanism of Salt Tolerance.
    Chen F; Fang P; Peng Y; Zeng W; Zhao X; Ding Y; Zhuang Z; Gao Q; Ren B
    Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31554168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iTRAQ-Based Proteomic Analysis Reveals Several Strategies to Cope with Drought Stress in Maize Seedlings.
    Jiang Z; Jin F; Shan X; Li Y
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31779286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize.
    Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H
    Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Proteomics Analysis of the Seedling Root Response of Drought-sensitive and Drought-tolerant Maize Varieties to Drought Stress.
    Zeng W; Peng Y; Zhao X; Wu B; Chen F; Ren B; Zhuang Z; Gao Q; Ding Y
    Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31181633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Proteomic and Morpho-Physiological Analyses of Maize Wild-Type Vp16 and Mutant vp16 Germinating Seed Responses to PEG-Induced Drought Stress.
    Liu S; Zenda T; Dong A; Yang Y; Liu X; Wang Y; Li J; Tao Y; Duan H
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31717328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iTRAQ-based quantitative proteomic analysis provides insight into the drought-stress response in maize seedlings.
    Ren W; Shi Z; Zhou M; Zhao B; Li H; Wang J; Liu Y; Zhao J
    Sci Rep; 2022 Jun; 12(1):9520. PubMed ID: 35681021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome Analysis of Tolerant and Susceptible Maize Genotypes Reveals Novel Insights about the Molecular Mechanisms Underlying Drought Responses in Leaves.
    Waititu JK; Zhang X; Chen T; Zhang C; Zhao Y; Wang H
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34209553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological and proteomic analyses revealed the response mechanisms of two different drought-resistant maize varieties.
    Li H; Yang M; Zhao C; Wang Y; Zhang R
    BMC Plant Biol; 2021 Nov; 21(1):513. PubMed ID: 34736392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-Seq Analysis Reveals MAPKKK Family Members Related to Drought Tolerance in Maize.
    Liu Y; Zhou M; Gao Z; Ren W; Yang F; He H; Zhao J
    PLoS One; 2015; 10(11):e0143128. PubMed ID: 26599013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages.
    Liu S; Zenda T; Li J; Wang Y; Liu X; Duan H
    PLoS One; 2020; 15(10):e0240468. PubMed ID: 33057352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome analysis of maize inbred lines differing in drought tolerance provides novel insights into the molecular mechanisms of drought responses in roots.
    Zheng H; Yang Z; Wang W; Guo S; Li Z; Liu K; Sui N
    Plant Physiol Biochem; 2020 Apr; 149():11-26. PubMed ID: 32035249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways responding to chilling stress in maize seedlings.
    Wang X; Shan X; Wu Y; Su S; Li S; Liu H; Han J; Xue C; Yuan Y
    J Proteomics; 2016 Sep; 146():14-24. PubMed ID: 27321579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A large-scale circular RNA profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis.
    Zhang P; Fan Y; Sun X; Chen L; Terzaghi W; Bucher E; Li L; Dai M
    Plant J; 2019 May; 98(4):697-713. PubMed ID: 30715761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings.
    Zhang X; Lei L; Lai J; Zhao H; Song W
    BMC Plant Biol; 2018 Apr; 18(1):68. PubMed ID: 29685101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative proteomic analysis revealing the complex network associated with waterlogging stress in maize (Zea mays L.) seedling root cells.
    Yu F; Han X; Geng C; Zhao Y; Zhang Z; Qiu F
    Proteomics; 2015 Jan; 15(1):135-47. PubMed ID: 25316036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological and proteomic analysis of maize seedling response to water deficiency stress.
    Xin L; Zheng H; Yang Z; Guo J; Liu T; Sun L; Xiao Y; Yang J; Yang Q; Guo L
    J Plant Physiol; 2018 Sep; 228():29-38. PubMed ID: 29852332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the molecular mechanisms regulating how ZmEREB24 improves drought tolerance in maize (Zea mays) seedlings.
    Ren Z; Fu J; Abou-Elwafa SF; Ku L; Xie X; Liu Z; Shao J; Wen P; Al Aboud NM; Su H; Wang T; Wei L
    Plant Physiol Biochem; 2024 Feb; 207():108292. PubMed ID: 38215602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.