These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 30340540)
1. Molecular mechanism of the extended oil accumulation phase contributing to the high seed oil content for the genotype of tung tree (Vernicia fordii). Zhang L; Wu P; Lu W; Lü S BMC Plant Biol; 2018 Oct; 18(1):248. PubMed ID: 30340540 [TBL] [Abstract][Full Text] [Related]
2. Fatty acid profile and unigene-derived simple sequence repeat markers in tung tree (Vernicia fordii). Zhang L; Jia B; Tan X; Thammina CS; Long H; Liu M; Wen S; Song X; Cao H PLoS One; 2014; 9(8):e105298. PubMed ID: 25167054 [TBL] [Abstract][Full Text] [Related]
3. Tung Tree (Vernicia fordii) Genome Provides A Resource for Understanding Genome Evolution and Improved Oil Production. Zhang L; Liu M; Long H; Dong W; Pasha A; Esteban E; Li W; Yang X; Li Z; Song A; Ran D; Zhao G; Zeng Y; Chen H; Zou M; Li J; Liang F; Xie M; Hu J; Wang D; Cao H; Provart NJ; Zhang L; Tan X Genomics Proteomics Bioinformatics; 2019 Dec; 17(6):558-575. PubMed ID: 32224189 [TBL] [Abstract][Full Text] [Related]
4. Triacylglycerol biosynthesis in shaded seeds of tung tree (Vernicia fordii) is regulated in part by Homeodomain Leucine Zipper 21. Zhang L; Wu P; Li W; Feng T; Shockey J; Chen L; Zhang L; Lü S Plant J; 2021 Dec; 108(6):1735-1753. PubMed ID: 34643970 [TBL] [Abstract][Full Text] [Related]
5. Proteomic Analysis of Tung Tree (Vernicia fordii) Oilseeds during the Developmental Stages. Zhan Z; Chen Y; Shockey J; Han X; Wang Y Molecules; 2016 Nov; 21(11):. PubMed ID: 27834836 [TBL] [Abstract][Full Text] [Related]
6. Identification, classification and differential expression of oleosin genes in tung tree (Vernicia fordii). Cao H; Zhang L; Tan X; Long H; Shockey JM PLoS One; 2014; 9(2):e88409. PubMed ID: 24516650 [TBL] [Abstract][Full Text] [Related]
7. Determination of superior Pistacia chinensis accession with high-quality seed oil and biodiesel production and revelation of LEC1/WRI1-mediated high oil accumulative mechanism for better developing woody biodiesel. Chen F; Lin W; Li W; Hu J; Li Z; Shi L; Zhang Z; Xiu Y; Lin S BMC Plant Biol; 2023 May; 23(1):268. PubMed ID: 37208597 [TBL] [Abstract][Full Text] [Related]
8. Expression analysis of VfDGAT2 in various tissues of the tung tree and in transgenic yeast. Cui QQ; Chen YC; Han XJ; Zhan ZY; Lin LY; Si LL; Wang YD Genet Mol Res; 2013 Dec; 12(4):6554-64. PubMed ID: 24391002 [TBL] [Abstract][Full Text] [Related]
9. Developmental regulation of diacylglycerol acyltransferase family gene expression in tung tree tissues. Cao H; Shockey JM; Klasson KT; Chapital DC; Mason CB; Scheffler BE PLoS One; 2013; 8(10):e76946. PubMed ID: 24146944 [TBL] [Abstract][Full Text] [Related]
10. Tung Tree (Vernicia fordii, Hemsl.) Genome and Transcriptome Sequencing Reveals Co-Ordinate Up-Regulation of Fatty Acid β-Oxidation and Triacylglycerol Biosynthesis Pathways During Eleostearic Acid Accumulation in Seeds. Cui P; Lin Q; Fang D; Zhang L; Li R; Cheng J; Gao F; Shockey J; Hu S; Lü S Plant Cell Physiol; 2018 Oct; 59(10):1990-2003. PubMed ID: 30137600 [TBL] [Abstract][Full Text] [Related]
11. Temporal transcriptome profiling of developing seeds reveals a concerted gene regulation in relation to oil accumulation in Pongamia (Millettia pinnata). Huang J; Hao X; Jin Y; Guo X; Shao Q; Kumar KS; Ahlawat YK; Harry DE; Joshi CP; Zheng Y BMC Plant Biol; 2018 Jul; 18(1):140. PubMed ID: 29986660 [TBL] [Abstract][Full Text] [Related]
12. [Analysis of oil synthesis metabolism pathways based on transcriptome changes in tung oil tree's seeds during three different development stages]. Chen H; Jiang GX; Long HX; Tan XF Yi Chuan; 2013 Dec; 35(12):1403-14. PubMed ID: 24645350 [TBL] [Abstract][Full Text] [Related]
13. Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung. Implications for the evolution of plant fatty acid diversity. Dyer JM; Chapital DC; Kuan JC; Mullen RT; Turner C; McKeon TA; Pepperman AB Plant Physiol; 2002 Dec; 130(4):2027-38. PubMed ID: 12481086 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide identification and transcriptional profiling of the basic helix-loop-helix gene family in tung tree ( Liu W; Yi Y; Zhuang J; Ge C; Cao Y; Zhang L; Liu M PeerJ; 2022; 10():e13981. PubMed ID: 36193421 [TBL] [Abstract][Full Text] [Related]
16. Seed Transcriptomics Analysis in Camellia oleifera Uncovers Genes Associated with Oil Content and Fatty Acid Composition. Lin P; Wang K; Zhou C; Xie Y; Yao X; Yin H Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29301285 [No Abstract] [Full Text] [Related]
17. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in Shahid M; Cai G; Zu F; Zhao Q; Qasim MU; Hong Y; Fan C; Zhou Y Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018533 [TBL] [Abstract][Full Text] [Related]
18. Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds. Kanai M; Mano S; Kondo M; Hayashi M; Nishimura M Plant Biotechnol J; 2016 May; 14(5):1241-50. PubMed ID: 26503031 [TBL] [Abstract][Full Text] [Related]
19. Genome-Wide Identification of B-Box Gene Family and Candidate Light-Related Member Analysis of Tung Tree ( Shi K; Zhao G; Li Z; Zhou J; Wu L; Tan X; Yuan J Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38396654 [TBL] [Abstract][Full Text] [Related]