BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 30341161)

  • 1. Chromosome assembly of large and complex genomes using multiple references.
    Kolmogorov M; Armstrong J; Raney BJ; Streeter I; Dunn M; Yang F; Odom D; Flicek P; Keane TM; Thybert D; Paten B; Pham S
    Genome Res; 2018 Nov; 28(11):1720-1732. PubMed ID: 30341161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ragout-a reference-assisted assembly tool for bacterial genomes.
    Kolmogorov M; Raney B; Paten B; Pham S
    Bioinformatics; 2014 Jun; 30(12):i302-9. PubMed ID: 24931998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosome-scale assembly comparison of the Korean Reference Genome KOREF from PromethION and PacBio with Hi-C mapping information.
    Kim HS; Jeon S; Kim C; Kim YK; Cho YS; Kim J; Blazyte A; Manica A; Lee S; Bhak J
    Gigascience; 2019 Dec; 8(12):. PubMed ID: 31794015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-CAR: a tool of contig scaffolding using multiple references.
    Chen KT; Chen CJ; Shen HT; Liu CL; Huang SH; Lu CL
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):469. PubMed ID: 28155633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving and correcting the contiguity of long-read genome assemblies of three plant species using optical mapping and chromosome conformation capture data.
    Jiao WB; Accinelli GG; Hartwig B; Kiefer C; Baker D; Severing E; Willing EM; Piednoel M; Woetzel S; Madrid-Herrero E; Huettel B; Hümann U; Reinhard R; Koch MA; Swan D; Clavijo B; Coupland G; Schneeberger K
    Genome Res; 2017 May; 27(5):778-786. PubMed ID: 28159771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upgrading short-read animal genome assemblies to chromosome level using comparative genomics and a universal probe set.
    Damas J; O'Connor R; Farré M; Lenis VPE; Martell HJ; Mandawala A; Fowler K; Joseph S; Swain MT; Griffin DK; Larkin DM
    Genome Res; 2017 May; 27(5):875-884. PubMed ID: 27903645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alignment of 1000 Genomes Project reads to reference assembly GRCh38.
    Zheng-Bradley X; Streeter I; Fairley S; Richardson D; Clarke L; Flicek P;
    Gigascience; 2017 Jul; 6(7):1-8. PubMed ID: 28531267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using long and linked reads to improve an Atlantic herring (Clupea harengus) genome assembly.
    Í Kongsstovu S; Mikalsen SO; Homrum EÍ; Jacobsen JA; Flicek P; Dahl HA
    Sci Rep; 2019 Nov; 9(1):17716. PubMed ID: 31776409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid assembly of the large and highly repetitive genome of
    Zimin AV; Puiu D; Luo MC; Zhu T; Koren S; Marçais G; Yorke JA; Dvořák J; Salzberg SL
    Genome Res; 2017 May; 27(5):787-792. PubMed ID: 28130360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromosomer: a reference-based genome arrangement tool for producing draft chromosome sequences.
    Tamazian G; Dobrynin P; Krasheninnikova K; Komissarov A; Koepfli KP; O'Brien SJ
    Gigascience; 2016 Aug; 5(1):38. PubMed ID: 27549770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From Pine Cones to Read Clouds: Rescaffolding the Megagenome of Sugar Pine (
    Crepeau MW; Langley CH; Stevens KA
    G3 (Bethesda); 2017 May; 7(5):1563-1568. PubMed ID: 28341701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CSA: A high-throughput chromosome-scale assembly pipeline for vertebrate genomes.
    Kuhl H; Li L; Wuertz S; Stöck M; Liang XF; Klopp C
    Gigascience; 2020 May; 9(5):. PubMed ID: 32449778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-CSAR: a multiple reference-based contig scaffolder using algebraic rearrangements.
    Chen KT; Shen HT; Lu CL
    BMC Syst Biol; 2018 Dec; 12(Suppl 9):139. PubMed ID: 30598087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmarking hybrid assembly approaches for genomic analyses of bacterial pathogens using Illumina and Oxford Nanopore sequencing.
    Chen Z; Erickson DL; Meng J
    BMC Genomics; 2020 Sep; 21(1):631. PubMed ID: 32928108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Obtaining high-quality draft genomes from uncultured microbes by cleaning and co-assembly of single-cell amplified genomes.
    Kogawa M; Hosokawa M; Nishikawa Y; Mori K; Takeyama H
    Sci Rep; 2018 Feb; 8(1):2059. PubMed ID: 29391438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategies for optimizing BioNano and Dovetail explored through a second reference quality assembly for the legume model, Medicago truncatula.
    Moll KM; Zhou P; Ramaraj T; Fajardo D; Devitt NP; Sadowsky MJ; Stupar RM; Tiffin P; Miller JR; Young ND; Silverstein KAT; Mudge J
    BMC Genomics; 2017 Aug; 18(1):578. PubMed ID: 28778149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of the Threespine Stickleback Genome Using a Hi-C-Based Proximity-Guided Assembly.
    Peichel CL; Sullivan ST; Liachko I; White MA
    J Hered; 2017 Sep; 108(6):693-700. PubMed ID: 28821183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LR_Gapcloser: a tiling path-based gap closer that uses long reads to complete genome assembly.
    Xu GC; Xu TJ; Zhu R; Zhang Y; Li SQ; Wang HW; Li JT
    Gigascience; 2019 Jan; 8(1):. PubMed ID: 30576505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Canu: scalable and accurate long-read assembly via adaptive
    Koren S; Walenz BP; Berlin K; Miller JR; Bergman NH; Phillippy AM
    Genome Res; 2017 May; 27(5):722-736. PubMed ID: 28298431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole Genome Profiling provides a robust framework for physical mapping and sequencing in the highly complex and repetitive wheat genome.
    Philippe R; Choulet F; Paux E; van Oeveren J; Tang J; Wittenberg AH; Janssen A; van Eijk MJ; Stormo K; Alberti A; Wincker P; Akhunov E; van der Vossen E; Feuillet C
    BMC Genomics; 2012 Jan; 13():47. PubMed ID: 22289472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.