BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 30341161)

  • 41. LTC: a novel algorithm to improve the efficiency of contig assembly for physical mapping in complex genomes.
    Frenkel Z; Paux E; Mester D; Feuillet C; Korol A
    BMC Bioinformatics; 2010 Nov; 11():584. PubMed ID: 21118513
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PacBio But Not Illumina Technology Can Achieve Fast, Accurate and Complete Closure of the High GC, Complex
    Teng JLL; Yeung ML; Chan E; Jia L; Lin CH; Huang Y; Tse H; Wong SSY; Sham PC; Lau SKP; Woo PCY
    Front Microbiol; 2017; 8():1448. PubMed ID: 28824579
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Efficient and accurate whole genome assembly and methylome profiling of E. coli.
    Powers JG; Weigman VJ; Shu J; Pufky JM; Cox D; Hurban P
    BMC Genomics; 2013 Oct; 14(1):675. PubMed ID: 24090403
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Integrative Meta-Assembly Pipeline (IMAP): Chromosome-level genome assembler combining multiple de novo assemblies.
    Song G; Lee J; Kim J; Kang S; Lee H; Kwon D; Lee D; Lang GI; Cherry JM; Kim J
    PLoS One; 2019; 14(8):e0221858. PubMed ID: 31454399
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Generation of physical map contig-specific sequences useful for whole genome sequence scaffolding.
    Jiang Y; Ninwichian P; Liu S; Zhang J; Kucuktas H; Sun F; Kaltenboeck L; Sun L; Bao L; Liu Z
    PLoS One; 2013; 8(10):e78872. PubMed ID: 24205335
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-quality genome (re)assembly using chromosomal contact data.
    Marie-Nelly H; Marbouty M; Cournac A; Flot JF; Liti G; Parodi DP; Syan S; Guillén N; Margeot A; Zimmer C; Koszul R
    Nat Commun; 2014 Dec; 5():5695. PubMed ID: 25517223
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Assembly of highly repetitive genomes using short reads: the genome of discrete typing unit III Trypanosoma cruzi strain 231.
    Baptista RP; Reis-Cunha JL; DeBarry JD; Chiari E; Kissinger JC; Bartholomeu DC; Macedo AM
    Microb Genom; 2018 Apr; 4(4):. PubMed ID: 29442617
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Highly accurate long reads are crucial for realizing the potential of biodiversity genomics.
    Hotaling S; Wilcox ER; Heckenhauer J; Stewart RJ; Frandsen PB
    BMC Genomics; 2023 Mar; 24(1):117. PubMed ID: 36927511
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A critical comparison of technologies for a plant genome sequencing project.
    Paajanen P; Kettleborough G; López-Girona E; Giolai M; Heavens D; Baker D; Lister A; Cugliandolo F; Wilde G; Hein I; Macaulay I; Bryan GJ; Clark MD
    Gigascience; 2019 Mar; 8(3):. PubMed ID: 30624602
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluating long-read de novo assembly tools for eukaryotic genomes: insights and considerations.
    Cosma BM; Shirali Hossein Zade R; Jordan EN; van Lent P; Peng C; Pillay S; Abeel T
    Gigascience; 2022 Dec; 12():. PubMed ID: 38000912
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improving the Completeness of Chromosome-Level Assembly by Recalling Sequences from Lost Contigs.
    Liu J; Liu F; Pan W
    Genes (Basel); 2023 Oct; 14(10):. PubMed ID: 37895275
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes.
    Conte MA; Joshi R; Moore EC; Nandamuri SP; Gammerdinger WJ; Roberts RB; Carleton KL; Lien S; Kocher TD
    Gigascience; 2019 Apr; 8(4):. PubMed ID: 30942871
    [TBL] [Abstract][Full Text] [Related]  

  • 53. GAAP: Genome-organization-framework-Assisted Assembly Pipeline for prokaryotic genomes.
    Yuan L; Yu Y; Zhu Y; Li Y; Li C; Li R; Ma Q; Siu GK; Yu J; Jiang T; Xiao J; Kang Y
    BMC Genomics; 2017 Jan; 18(Suppl 1):952. PubMed ID: 28198678
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparative scaffolding and gap filling of ancient bacterial genomes applied to two ancient
    Luhmann N; Doerr D; Chauve C
    Microb Genom; 2017 Sep; 3(9):e000123. PubMed ID: 29114402
    [No Abstract]   [Full Text] [Related]  

  • 55. Improved assembly of noisy long reads by k-mer validation.
    Carvalho AB; Dupim EG; Goldstein G
    Genome Res; 2016 Dec; 26(12):1710-1720. PubMed ID: 27831497
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Efficient hybrid de novo assembly of human genomes with WENGAN.
    Di Genova A; Buena-Atienza E; Ossowski S; Sagot MF
    Nat Biotechnol; 2021 Apr; 39(4):422-430. PubMed ID: 33318652
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Circlator: automated circularization of genome assemblies using long sequencing reads.
    Hunt M; Silva ND; Otto TD; Parkhill J; Keane JA; Harris SR
    Genome Biol; 2015 Dec; 16():294. PubMed ID: 26714481
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Platon: identification and characterization of bacterial plasmid contigs in short-read draft assemblies exploiting protein sequence-based replicon distribution scores.
    Schwengers O; Barth P; Falgenhauer L; Hain T; Chakraborty T; Goesmann A
    Microb Genom; 2020 Oct; 6(10):. PubMed ID: 32579097
    [TBL] [Abstract][Full Text] [Related]  

  • 59. FGAP: an automated gap closing tool.
    Piro VC; Faoro H; Weiss VA; Steffens MB; Pedrosa FO; Souza EM; Raittz RT
    BMC Res Notes; 2014 Jun; 7():371. PubMed ID: 24938749
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Whole-genome sequencing and assembly with high-throughput, short-read technologies.
    Sundquist A; Ronaghi M; Tang H; Pevzner P; Batzoglou S
    PLoS One; 2007 May; 2(5):e484. PubMed ID: 17534434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.