These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 30341161)

  • 81. Integrated and sequence-ordered BAC- and YAC-based physical maps for the rat genome.
    Krzywinski M; Wallis J; Gösele C; Bosdet I; Chiu R; Graves T; Hummel O; Layman D; Mathewson C; Wye N; Zhu B; Albracht D; Asano J; Barber S; Brown-John M; Chan S; Chand S; Cloutier A; Davito J; Fjell C; Gaige T; Ganten D; Girn N; Guggenheimer K; Himmelbauer H; Kreitler T; Leach S; Lee D; Lehrach H; Mayo M; Mead K; Olson T; Pandoh P; Prabhu AL; Shin H; Tänzer S; Thompson J; Tsai M; Walker J; Yang G; Sekhon M; Hillier L; Zimdahl H; Marziali A; Osoegawa K; Zhao S; Siddiqui A; de Jong PJ; Warren W; Mardis E; McPherson JD; Wilson R; Hübner N; Jones S; Marra M; Schein J
    Genome Res; 2004 Apr; 14(4):766-79. PubMed ID: 15060021
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Reference-assisted chromosome assembly.
    Kim J; Larkin DM; Cai Q; Asan ; Zhang Y; Ge RL; Auvil L; Capitanu B; Zhang G; Lewin HA; Ma J
    Proc Natl Acad Sci U S A; 2013 Jan; 110(5):1785-90. PubMed ID: 23307812
    [TBL] [Abstract][Full Text] [Related]  

  • 83. ARKS: chromosome-scale scaffolding of human genome drafts with linked read kmers.
    Coombe L; Zhang J; Vandervalk BP; Chu J; Jackman SD; Birol I; Warren RL
    BMC Bioinformatics; 2018 Jun; 19(1):234. PubMed ID: 29925315
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Scaffolding of long read assemblies using long range contact information.
    Ghurye J; Pop M; Koren S; Bickhart D; Chin CS
    BMC Genomics; 2017 Jul; 18(1):527. PubMed ID: 28701198
    [TBL] [Abstract][Full Text] [Related]  

  • 85. GMcloser: closing gaps in assemblies accurately with a likelihood-based selection of contig or long-read alignments.
    Kosugi S; Hirakawa H; Tabata S
    Bioinformatics; 2015 Dec; 31(23):3733-41. PubMed ID: 26261222
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Canfam_GSD: De novo chromosome-length genome assembly of the German Shepherd Dog (Canis lupus familiaris) using a combination of long reads, optical mapping, and Hi-C.
    Field MA; Rosen BD; Dudchenko O; Chan EKF; Minoche AE; Edwards RJ; Barton K; Lyons RJ; Tuipulotu DE; Hayes VM; D Omer A; Colaric Z; Keilwagen J; Skvortsova K; Bogdanovic O; Smith MA; Aiden EL; Smith TPL; Zammit RA; Ballard JWO
    Gigascience; 2020 Apr; 9(4):. PubMed ID: 32236524
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Karyotypic Evolution of Sauropsid Vertebrates Illuminated by Optical and Physical Mapping of the Painted Turtle and Slider Turtle Genomes.
    Lee LS; Navarro-Domínguez BM; Wu Z; Montiel EE; Badenhorst D; Bista B; Gessler TB; Valenzuela N
    Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32806747
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Contrasting new and available reference genomes to highlight uncertainties in assemblies and areas for future improvement: an example with monodontid species.
    Bringloe TT; Parent GJ
    BMC Genomics; 2023 Nov; 24(1):693. PubMed ID: 37985969
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Novo&Stitch: accurate reconciliation of genome assemblies via optical maps.
    Pan W; Wanamaker SI; Ah-Fong AMV; Judelson HS; Lonardi S
    Bioinformatics; 2018 Jul; 34(13):i43-i51. PubMed ID: 29949964
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Improving Illumina assemblies with Hi-C and long reads: An example with the North African dromedary.
    Elbers JP; Rogers MF; Perelman PL; Proskuryakova AA; Serdyukova NA; Johnson WE; Horin P; Corander J; Murphy D; Burger PA
    Mol Ecol Resour; 2019 Jul; 19(4):1015-1026. PubMed ID: 30972949
    [TBL] [Abstract][Full Text] [Related]  

  • 91. BiSCoT: improving large eukaryotic genome assemblies with optical maps.
    Istace B; Belser C; Aury JM
    PeerJ; 2020; 8():e10150. PubMed ID: 33194395
    [TBL] [Abstract][Full Text] [Related]  

  • 92. KOREF_S1: phased, parental trio-binned Korean reference genome using long reads and Hi-C sequencing methods.
    Kim HS; Jeon S; Kim Y; Kim C; Bhak J; Bhak J
    Gigascience; 2022 Mar; 11():. PubMed ID: 35333300
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Physical mapping in large genomes: accelerating anchoring of BAC contigs to genetic maps through in silico analysis.
    Paux E; Legeai F; Guilhot N; Adam-Blondon AF; Alaux M; Salse J; Sourdille P; Leroy P; Feuillet C
    Funct Integr Genomics; 2008 Feb; 8(1):29-32. PubMed ID: 18038165
    [TBL] [Abstract][Full Text] [Related]  

  • 94. The physical map of wheat chromosome 5DS revealed gene duplications and small rearrangements.
    Akpinar BA; Magni F; Yuce M; Lucas SJ; Šimková H; Šafář J; Vautrin S; Bergès H; Cattonaro F; Doležel J; Budak H
    BMC Genomics; 2015 Jun; 16(1):453. PubMed ID: 26070810
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Assembly of chloroplast genomes with long- and short-read data: a comparison of approaches using Eucalyptus pauciflora as a test case.
    Wang W; Schalamun M; Morales-Suarez A; Kainer D; Schwessinger B; Lanfear R
    BMC Genomics; 2018 Dec; 19(1):977. PubMed ID: 30594129
    [TBL] [Abstract][Full Text] [Related]  

  • 96. An efficient approach to BAC based assembly of complex genomes.
    Visendi P; Berkman PJ; Hayashi S; Golicz AA; Bayer PE; Ruperao P; Hurgobin B; Montenegro J; Chan CK; Staňková H; Batley J; Šimková H; Doležel J; Edwards D
    Plant Methods; 2016; 12():2. PubMed ID: 26793268
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The haplotype-resolved chromosome pairs of a heterozygous diploid African cassava cultivar reveal novel pan-genome and allele-specific transcriptome features.
    Qi W; Lim YW; Patrignani A; Schläpfer P; Bratus-Neuenschwander A; Grüter S; Chanez C; Rodde N; Prat E; Vautrin S; Fustier MA; Pratas D; Schlapbach R; Gruissem W
    Gigascience; 2022 Mar; 11():. PubMed ID: 35333302
    [TBL] [Abstract][Full Text] [Related]  

  • 98. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter.
    Jackman SD; Vandervalk BP; Mohamadi H; Chu J; Yeo S; Hammond SA; Jahesh G; Khan H; Coombe L; Warren RL; Birol I
    Genome Res; 2017 May; 27(5):768-777. PubMed ID: 28232478
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Ultraaccurate genome sequencing and haplotyping of single human cells.
    Chu WK; Edge P; Lee HS; Bansal V; Bafna V; Huang X; Zhang K
    Proc Natl Acad Sci U S A; 2017 Nov; 114(47):12512-12517. PubMed ID: 29078313
    [TBL] [Abstract][Full Text] [Related]  

  • 100. TGS-GapCloser: A fast and accurate gap closer for large genomes with low coverage of error-prone long reads.
    Xu M; Guo L; Gu S; Wang O; Zhang R; Peters BA; Fan G; Liu X; Xu X; Deng L; Zhang Y
    Gigascience; 2020 Sep; 9(9):. PubMed ID: 32893860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.