These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 3034152)

  • 1. Transport of lactate and other short-chain monocarboxylates in the yeast Saccharomyces cerevisiae.
    Cássio F; Leão C; van Uden N
    Appl Environ Microbiol; 1987 Mar; 53(3):509-13. PubMed ID: 3034152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms regulating the transport of acetic acid in Saccharomyces cerevisiae.
    Casal M; Cardoso H; Leao C
    Microbiology (Reading); 1996 Jun; 142 ( Pt 6)():1385-1390. PubMed ID: 8704978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of short-chain monocarboxylic acids by the yeast Torulaspora delbrueckii: specificity of the transport systems and their regulation.
    Casal M; Leão C
    Biochim Biophys Acta; 1995 Jun; 1267(2-3):122-30. PubMed ID: 7612664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of acetic acid and other short-chain monocarboxylic acids in the yeasts Torulaspora delbrueckii and Saccharomyces cerevisiae: transport and its regulation.
    Casal M; Leão C
    Folia Microbiol (Praha); 1994; 39(6):512-3. PubMed ID: 8550004
    [No Abstract]   [Full Text] [Related]  

  • 6. Lactate and pyruvate transport is dominated by a pH gradient-sensitive carrier in rat skeletal muscle sarcolemmal vesicles.
    Roth DA; Brooks GA
    Arch Biochem Biophys; 1990 Jun; 279(2):386-94. PubMed ID: 2350185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A proton gradient is the driving force for uphill transport of lactate in human placental brush-border membrane vesicles.
    Balkovetz DF; Leibach FH; Mahesh VB; Ganapathy V
    J Biol Chem; 1988 Sep; 263(27):13823-30. PubMed ID: 2843538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lack of lactate-proton symport activity in pck1 mutants of Saccharomyces cerevisiae.
    Casal M; Blázquez MA; Gamo FJ; Gancedo C; Leão C
    FEMS Microbiol Lett; 1995 May; 128(3):279-82. PubMed ID: 7781975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of lactic acid in Kluyveromyces marxianus: evidence for a monocarboxylate uniport.
    Fonseca A; Spencer-Martins I; van Uden N
    Yeast; 1991 Nov; 7(8):775-80. PubMed ID: 1789000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characteristics of pyruvate transport in Phycomyces blakesleeanus.
    Marcos JA; de Arriaga D; Busto F; Soler J
    Fungal Genet Biol; 1998 Dec; 25(3):204-15. PubMed ID: 9917374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics and pH-dependence of glycine-proton symport in Saccharomyces cerevisiae.
    Ballarin-Denti A; Den Hollander JA; Sanders D; Slayman CW; Slayman CL
    Biochim Biophys Acta; 1984 Nov; 778(1):1-16. PubMed ID: 6093875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton movements coupled to lactate and alanine transport in Escherichia coli: isolation of mutants with altered stoichiometry in alanine transport.
    Collins SH; Jarvis AW; Lindsay RJ; Hamilton WA
    J Bacteriol; 1976 Jun; 126(3):1232-44. PubMed ID: 7547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the enhanced transport of L- and D-lactate into human red blood cells infected with Plasmodium falciparum suggests the presence of a novel saturable lactate proton cotransporter.
    Cranmer SL; Conant AR; Gutteridge WE; Halestrap AP
    J Biol Chem; 1995 Jun; 270(25):15045-52. PubMed ID: 7797486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular pH and distribution of weak acids across cell membranes. A study of D- and L-lactate and of DMO in rat diaphragm.
    Roos A
    J Physiol; 1975 Jul; 249(1):1-25. PubMed ID: 239228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [On the kinetics of phosphate permeation in human erythrocytes with respect to variation in extracellular phosphate concentration, ionic medium and cell volume].
    Deuticke B
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1967; 296(1):21-38. PubMed ID: 5243819
    [No Abstract]   [Full Text] [Related]  

  • 16. Effects of ethanol and other alkanols on transport of acetic acid in Saccharomyces cerevisiae.
    Casal M; Cardoso H; Leão C
    Appl Environ Microbiol; 1998 Feb; 64(2):665-8. PubMed ID: 9464405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial metabolism of pyruvate in bovine spermatozoa.
    Hutson SM; Van Dop C; Lardy HA
    J Biol Chem; 1977 Feb; 252(4):1309-15. PubMed ID: 838719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactate transport is mediated by a membrane-bound carrier in rat skeletal muscle sarcolemmal vesicles.
    Roth DA; Brooks GA
    Arch Biochem Biophys; 1990 Jun; 279(2):377-85. PubMed ID: 2350184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-lactate transport in Ehrlich ascites-tumour cells.
    Spencer TL; Lehninger AL
    Biochem J; 1976 Feb; 154(2):405-14. PubMed ID: 7237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Fermentation of pyruvate by 7 species of phototrophic purple bacteria].
    Gürgün V; Kirchner G; Pfennig N
    Z Allg Mikrobiol; 1976; 16(8):573-86. PubMed ID: 12621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.