These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
423 related articles for article (PubMed ID: 30341606)
1. Methods for Structural Analysis of Amyloid Fibrils in Misfolding Diseases. Vadukul DM; Al-Hilaly YK; Serpell LC Methods Mol Biol; 2019; 1873():109-122. PubMed ID: 30341606 [TBL] [Abstract][Full Text] [Related]
2. The Japanese mutant Aβ (ΔE22-Aβ(1-39)) forms fibrils instantaneously, with low-thioflavin T fluorescence: seeding of wild-type Aβ(1-40) into atypical fibrils by ΔE22-Aβ(1-39). Cloe AL; Orgel JP; Sachleben JR; Tycko R; Meredith SC Biochemistry; 2011 Mar; 50(12):2026-39. PubMed ID: 21291268 [TBL] [Abstract][Full Text] [Related]
3. Toward a molecular theory of early and late events in monomer to amyloid fibril formation. Straub JE; Thirumalai D Annu Rev Phys Chem; 2011; 62():437-63. PubMed ID: 21219143 [TBL] [Abstract][Full Text] [Related]
4. Amyloid-beta fibrillogenesis seeded by interface-induced peptide misfolding and self-assembly. Chi EY; Frey SL; Winans A; Lam KL; Kjaer K; Majewski J; Lee KY Biophys J; 2010 May; 98(10):2299-308. PubMed ID: 20483339 [TBL] [Abstract][Full Text] [Related]
8. Solution conformation and amyloid-like fibril formation of a polar peptide derived from a beta-hairpin in the OspA single-layer beta-sheet. Ohnishi S; Koide A; Koide S J Mol Biol; 2000 Aug; 301(2):477-89. PubMed ID: 10926522 [TBL] [Abstract][Full Text] [Related]
9. Existence of different structural intermediates on the fibrillation pathway of human serum albumin. Juárez J; Taboada P; Mosquera V Biophys J; 2009 Mar; 96(6):2353-70. PubMed ID: 19289061 [TBL] [Abstract][Full Text] [Related]
10. The protective effect of crocin on the amyloid fibril formation of Aβ42 peptide in vitro. Ghahghaei A; Bathaie SZ; Kheirkhah H; Bahraminejad E Cell Mol Biol Lett; 2013 Sep; 18(3):328-39. PubMed ID: 23737042 [TBL] [Abstract][Full Text] [Related]
11. New Mechanism of Amyloid Fibril Formation. Galzitskaya O Curr Protein Pept Sci; 2019; 20(6):630-640. PubMed ID: 30686252 [TBL] [Abstract][Full Text] [Related]
12. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations. Nguyen P; Derreumaux P Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046 [TBL] [Abstract][Full Text] [Related]
13. Reversible Assembly of a Drug Peptide into Amyloid Fibrils: A Dynamic Circular Dichroism Study. Gobeaux F; Wien F Langmuir; 2018 Jun; 34(24):7180-7191. PubMed ID: 29772895 [TBL] [Abstract][Full Text] [Related]
14. Insights into amyloid-like aggregation of H2 region of the C-terminal domain of nucleophosmin. Russo A; Diaferia C; La Manna S; Giannini C; Sibillano T; Accardo A; Morelli G; Novellino E; Marasco D Biochim Biophys Acta Proteins Proteom; 2017 Feb; 1865(2):176-185. PubMed ID: 27865970 [TBL] [Abstract][Full Text] [Related]
15. Amyloid-like fibril formation in an all beta-barrel protein. Partially structured intermediate state(s) is a precursor for fibril formation. Srisailam S; Kumar TK; Rajalingam D; Kathir KM; Sheu HS; Jan FJ; Chao PC; Yu C J Biol Chem; 2003 May; 278(20):17701-9. PubMed ID: 12584201 [TBL] [Abstract][Full Text] [Related]
16. Study of Protein Amyloid-Like Aggregates by Solid-State Circular Dichroism Spectroscopy. Hu HY; Jiang LL; Hong JY Curr Protein Pept Sci; 2017; 18(1):100-103. PubMed ID: 27396751 [TBL] [Abstract][Full Text] [Related]
17. The Properties of Amyloid-β Fibrils Are Determined by their Path of Formation. Brännström K; Islam T; Gharibyan AL; Iakovleva I; Nilsson L; Lee CC; Sandblad L; Pamrén A; Olofsson A J Mol Biol; 2018 Jun; 430(13):1940-1949. PubMed ID: 29751013 [TBL] [Abstract][Full Text] [Related]