These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 30341814)

  • 21. New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica - a comparison.
    Gellissen G; Kunze G; Gaillardin C; Cregg JM; Berardi E; Veenhuis M; van der Klei I
    FEMS Yeast Res; 2005 Nov; 5(11):1079-96. PubMed ID: 16144775
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-conventional yeasts as hosts for heterologous protein production.
    Domínguez A; Fermiñán E; Sánchez M; González FJ; Pérez-Campo FM; García S; Herrero AB; San Vicente A; Cabello J; Prado M; Iglesias FJ; Choupina A; Burguillo FJ; Fernández-Lago L; López MC
    Int Microbiol; 1998 Jun; 1(2):131-42. PubMed ID: 10943351
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enoate reductases from non conventional yeasts: bioconversion, cloning, and functional expression in Saccharomyces cerevisiae.
    Raimondi S; Romano D; Amaretti A; Molinari F; Rossi M
    J Biotechnol; 2011 Dec; 156(4):279-85. PubMed ID: 21933690
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The NADPH-cytochrome P450 reductase gene from Gibberella fujikuroi is essential for gibberellin biosynthesis.
    Malonek S; Rojas MC; Hedden P; Gaskin P; Hopkins P; Tudzynski B
    J Biol Chem; 2004 Jun; 279(24):25075-84. PubMed ID: 15037621
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vivo reconstitution of highly active Candida maltosa cytochrome P450 monooxygenase systems in inducible membranes of Saccharomyces cerevisiae.
    Zimmer T; Kaminski K; Scheller U; Vogel F; Schunck WH
    DNA Cell Biol; 1995 Jul; 14(7):619-28. PubMed ID: 7626221
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Expression and characterization of NADPH-cytochrome P450 reductase from Trametes versicolor in Escherichia coli].
    Sun X; He C; Fang Z; Xiao Y
    Sheng Wu Gong Cheng Xue Bao; 2018 Jul; 34(7):1156-1168. PubMed ID: 30058314
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of expression of the Aspergillus niger benzoate para-hydroxylase cytochrome P450 system.
    van den Brink JM; Punt PJ; van Gorcom RF; van den Hondel CA
    Mol Gen Genet; 2000 May; 263(4):601-9. PubMed ID: 10852481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a plant viral-vector-based gene expression assay for the screening of yeast cytochrome p450 monooxygenases.
    Hanley K; Nguyen LV; Khan F; Pogue GP; Vojdani F; Panda S; Pinot F; Oriedo VB; Rasochova L; Subramanian M; Miller B; White EL
    Assay Drug Dev Technol; 2003 Feb; 1(1 Pt 2):147-60. PubMed ID: 15090141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cloning, functional expression, and subcellular localization of multiple NADPH-cytochrome P450 reductases from hybrid poplar.
    Ro DK; Ehlting J; Douglas CJ
    Plant Physiol; 2002 Dec; 130(4):1837-51. PubMed ID: 12481067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular Cloning, Heterologous Expression, and Functional Characterization of an NADPH-Cytochrome P450 Reductase Gene from Camptotheca acuminata, a Camptothecin-Producing Plant.
    Qu X; Pu X; Chen F; Yang Y; Yang L; Zhang G; Luo Y
    PLoS One; 2015; 10(8):e0135397. PubMed ID: 26252645
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic transformation and biotechnological application of the yeast Arxula adeninivorans.
    Wartmann T; Kunze G
    Appl Microbiol Biotechnol; 2000 Nov; 54(5):619-24. PubMed ID: 11131385
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coexpression of mammalian cytochrome P450 and reductase in Escherichia coli.
    Dong J; Porter TD
    Arch Biochem Biophys; 1996 Mar; 327(2):254-9. PubMed ID: 8619611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetically engineered P450 monooxygenases: construction of bovine P450c17/yeast reductase fused enzymes.
    Shibata M; Sakaki T; Yabusaki Y; Murakami H; Ohkawa H
    DNA Cell Biol; 1990; 9(1):27-36. PubMed ID: 2180429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative Analysis of NADPH-Cytochrome P450 Reductases From Legumes for Heterologous Production of Triterpenoids in Transgenic
    Istiandari P; Yasumoto S; Srisawat P; Tamura K; Chikugo A; Suzuki H; Seki H; Fukushima EO; Muranaka T
    Front Plant Sci; 2021; 12():762546. PubMed ID: 34975947
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Purification and characterization of benzoate-para-hydroxylase, a cytochrome P450 (CYP53A1), from Aspergillus niger.
    Faber BW; van Gorcom RF; Duine JA
    Arch Biochem Biophys; 2001 Oct; 394(2):245-54. PubMed ID: 11594739
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integration of heterologous genes in several yeast species using vectors containing a Hansenula polymorpha-derived rDNA-targeting element.
    Klabunde J; Kunze G; Gellissen G; Hollenberg CP
    FEMS Yeast Res; 2003 Nov; 4(2):185-93. PubMed ID: 14613883
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Customized yeast cell factories for biopharmaceuticals: from cell engineering to process scale up.
    Madhavan A; Arun KB; Sindhu R; Krishnamoorthy J; Reshmy R; Sirohi R; Pugazhendi A; Awasthi MK; Szakacs G; Binod P
    Microb Cell Fact; 2021 Jun; 20(1):124. PubMed ID: 34193127
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cloning, production, and functional expression of the bacteriocin enterocin A, produced by Enterococcus faecium T136, by the yeasts Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, and Arxula adeninivorans.
    Borrero J; Kunze G; Jiménez JJ; Böer E; Gútiez L; Herranz C; Cintas LM; Hernández PE
    Appl Environ Microbiol; 2012 Aug; 78(16):5956-61. PubMed ID: 22685156
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The use of Yarrowia lipolytica for the expression of human cytochrome P450 CYP1A1.
    Nthangeni MB; Urban P; Pompon D; Smit MS; Nicaud JM
    Yeast; 2004 May; 21(7):583-92. PubMed ID: 15164361
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CYP53A15 of Cochliobolus lunatus, a target for natural antifungal compounds.
    Podobnik B; Stojan J; Lah L; Krasevec N; Seliskar M; Rizner TL; Rozman D; Komel R
    J Med Chem; 2008 Jun; 51(12):3480-6. PubMed ID: 18505250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.